
 A

COLOR
MANAGEMENT

MODULE
FOR

KEYFRAME
Bachelor thesis by Thomas Simon

Spring 2011
Høgskolen i Gjøvik

Hochschule der Medien, Stuttgart

The goal of color management in movie color grading is to enable constant color reproduction
throughout a film workflow. The main goal of my work was the implemantation of a color
management module for the color grading application Keyframe RushesControl. Therefore, I
created a connection from Keyframe’s already existing functions to the color transformation
functions of littleCMS in order to enable color management both based on the ICC workflow and
on Nucoda lookup tables.

In this thesis, I will at first present the principles of color science and colorimetry including
the basic structure of a color management workflow.

Secondly, I will present the techniques and tools I used to program the color management
module with C++. Also, I will discuss functions and methods of littleCMM that my color man-
agement module mainly was based on.

Finally, I will present an experiment I made after the implementation to evaluate the perfor-
mance of my CMM. This includes a discussion about the problems involved in designing a suit-
able experiment for our setup.

Abstract

1.	 Introduction	 5

2.	 What is Color Management?	 6
The Color Reproduction Problem...6
The Color Models...8

What is Color?..8
The Visual System..9
Color Matching Experiments..11
Color Spaces.. 11

The Definition of Color Management...15
Gamut Mapping...15
Gamut algorithms.. 16
Lookup tables..18
Interpolation...19

The ICC workflow..20
ICC components...20
Device calibration..22
Device characterization...23

The Macintosh Color Management Module..25

3.	 Implementing a Color Managemenent Module	 27
Who is Who? And What Is What?..27

Introducing the Actors...27
Introducing the Technology..30
Introducing the Code..30

The Graphical User Interface..32
The GUI Draft..32
GUI functionality...36
Dummy GUI..36

The Code..37
Colormanagement.cpp/Colormanagement.h...37
doColorManagement(Project *project)...37
doNoColorManagement(Project *project)..40
doProfilesColorManagement(Project *project)..42
doLUTsColorManagement(Project *project)..49

Screen Flow Video...50
Discussion..51

Contents

4.	 Evaluation of the Color Management Module	 52
Experiment design and evaluation..52

1..Design of the color patches..52
2..Monitor calibration..54
3..Profiling..55
4..Measuring..56
5..Evaluation..57

Discussion..61
How the results can be interpreted... 61

Conclusion...66
What can we improve in the future?..66

5.	 Figures	 67

6.	 References	 69

7.	 Appendix: Source Code	 71

In the fall of 2010, I met with Arne Magnus Bakke, John Christian Rosenlund and Andreas
Herzog from Drylab for the first time to talk about a topic for my bachelor thesis that I was
soon to begin in the beginning of 2011. I heard about the color grading software called Key-
frame RushesControl they were developing and I was very eager to help working on it. For me,
it was a big chance to actually program and develop a image processing application for the first
time during my studies.

We discussed several possible tasks related to Keyframe RushesControl, for example the inte-
gration of ArriRAW formats or the implementation of a color management module for the soft-
ware. On the one hand side, I was most interessted in color management for my future studies,
and on the other hand side, color management was a very important topic for Andreas Herzog
and John Christian Rosenlund as well because as film photographers they were confronted with
the color reproduction problem on a daily basis. Thus, we decided to tackle on the color manage-
ment module for the application.

From this point on, my task was to program and integrate a consistent color workflow in
Keyframe. At first, I wanted to find about the basics and the general pupose of color manage-
ment. I wanted to investigate a theoretical approach in order to gain a profound insight in color
management and color science in general. That is what the part A is all about.

Secondly, I programmed the actual feature for Keyframe RushesControl with C++. I wanted
to learn more about this particular programming language and about the source code that
already existed. Then, the main task was to “translate” the theoretical knowledge into a user-
friendly color management module for the application. That is what the part B is all about.

Finally, I wanted to find out how well my color management module performed. Therefore, I
evaluated a series of color patches with the help of the basics of color management investigated
for my first part of this thesis. Later on, I set up several experiments and discussed the results
gained from the experiments. That is what the part C is all about.

Last but not least, I want to thank my supervising professors Jon Yngve Hardeberg og Ronald
Schaul for their feedback and help during the writing and evaluation process. Also, I want to
thank a Arne Magnus Bakke and Tariq Islam who were a very big help during the programming
of the module. Especially without the help of Arne Magnus Bakke, the thesis would have been
a lot more difficult to accomplish. Finally, I want to thank Aditya Sole who helped me with the
evaluation and interpretation of the experiment results.

 Thomas Simon in Gjøvik on April, 27th 2011.

Introduction

The Color Reproduction Problem

Color Management is a tool to obtain constant color reproduction throughout a workflow
with different media devices. The main goal of color management is to solve the so-called color
reproduction problem. The color reproduction problem is the phenomenon that any given input
color data is reproduced differently on different media devices. In other words, the colors of a
real-life scene look different on different devices throughout an image reproduction workflow.

Two aspects of the Color Reproduction Problem

This problem is probably well known to everyone who ever used a camera and looked at this
picture on a computer screen, posted it on the Internet or ordered a print copy. Imagine you take
a picture; you see an impressing sunset and you take out your camera. You capture the scene.

part A

What is Color Management?

Figure 2-1 Sunset in Gjøvik

Part A: What is Color Management? ﻿

Then, you look at the camera screen and you will find that the recorded picture is somewhat
less expressive: The colors are less intensive and the picture might be either too dark or too light.
You notice maybe an overall loss of quality compared to the original scene. You will come to a
similar conclusion when you look at the picture on a computer screen later. Moreover, you will
notice that the colors on the computer screen look again different both compared to the original
scene and the camera display. In the case of printing the picture, you get a third, very different
representation of the original scene.
At this point, we make a note that the picture of one original scene that is reproduced on three differ-
ent media types result in three very different color appearances, although the original color informa-
tion stays constant for all three media.

And it gets even more complex. Imagine we looking at the same picture on several different
screens. We notice that the picture looks different on a laptop screen as compared to a desktop
LCD screen, and even more different compared to a CRT screen. The same phenomenon can be
observed for multiple printers. When we print out our picture on three different printers, we
will most likely get three different color results.
Thus, we make another note that we get three very different color appearances for multiple individual
devices even if these devices belong to the same group of media devices.

To sum up, the color reproduction problem can be divided into two aspects. The displayed
color appearance changes, if:

1.	 we use devices of different kinds of media devices.

2.	 we use different individual devices of the same kind of media devices.

Causes for the CRD

The reasons for the color reproduction problem are numerous and I am going to explain them
in detail later. The most important ones shall be named here shortly: Compared to the original
scene, no capturing or displaying device is capable of reproducing the full range of colors that
we can perceive with the human eye. These are the technical boundaries of our cameras, screens
or printers. In terms of different results when comparing different kinds of media – like print-
ers, scanners or cameras – we can say that all these different kinds of media devices are based
on totally different principles to reproduce or record colors1. Moreover, the surrounding have a
big influence on how color is perceived. A picture looks very different depending on whether the
light in a room is turned off or on, for example.

1 Screens for example are “additive” output devices: They “produce color on a dark background
through the combination of differently colored lights, known as primaries” (Sharma, 65). That means the
primaries red, green and blue are mixed together to produce colors. All primaries mixed together evenly
result in white. Printers in contrast are “subtractive” devices: The color for these devices “is produced
through a process of removing (subtracting) unwanted spectral components from “white” light” most
typically “on transparent or reflective media” (Sharma, 65f). The primary colors are most often cyan, ma-
genta, yellow and black. All primaries mixed together evenly result in black. These fundamental structur-
al differences in how color is achieved leads to fundamentally different ranges of color that both devices
can produce when compared to each other.

﻿ 11

Esthetic and Economical Dimensions of the CRD

Why is a different color appearance even a problem? Imagine you invested a lot of time
and/or money in capturing and photoshoping a picture. You set the composition carefully, you
retouched the surfaces and you made the colors to look just the way you intended them to be.
Then, you post the pictures on your website and the colors look completely different. What is
worse, you order a print copy online and the result does not look like what you expected it to be
at all. It is frustrating for you personally but it is damaging for people who work with pictures
professionally like photographers, printers, designers etc2. They depend on that the results of
their work keep the same appearance throughout a long workflow involving various, unpredict-
able stations. In another example, the German telecommunication company “Deutsche Telekom”
registered the magenta color of its logo as legal trademark and sued many competitors for using
“their” trademarked color (c. Wikipedia: Magenta (Farbe)).

The company naturally wants to have a constant representation of this magenta tone throughout
the entire workflow for every picture that leaves there public relations office, a commercial ad
for instance.

Keeping the right color representation is very important, both professionally and esthetically.
But can we actually solve this problem? What components does the perception of color depend
on? Color and our whole perception is strongly subjective. Maybe, it is just in our eyes that the
colors look different. After all, the color information of our picture does stay constant through-
out the workflow. Nevertheless, we do perceive different colors. But is it possible to measure the
perceived differences empirically?

2 When I was working for a photographer in 2004, for example, I remember one time that a customer
complained about “wrong” colors of a picture we made. Eventually, it turned out that this was due to
wrong color management on the customer’s side but we had to give him rebate on his final price anyway.

Figure 2-2 Telekom logo on the
company’s headquarter in Bonn.

Part A: What is Color Management? What is Color?

The Color Models

It is possible, to begin with! Color models are models that help us describe and categorize
colors empirically. These color models are going to be the second big topic we are going to take a
look at now.

What is Color?

Let us first look at what colors actually are. The International Commission of Illumination
(CIE) defines color as following:

Color is an “attribute of visual perception consisting of any combination of chromatic
and achromatic content” (IEV no. 845-02-18).

That means color is an attribute of an object or a surface, that we perceive with our eyes. We
describe this attribute in words by “chromatic color names such as yellow, orange, brown, red,
pink, green, blue, purple, etc., or by achromatic color names such as white, grey, black, etc.,” and
qualify it with words like “bright, dim, light, dark, etc.” (IEV no. 845-02-18).

The medium that “transports” colors is light. But the colors we perceive depend on more than
that. The perceived color depends “on the spectral distribution of the color stimulus”, “stimulus
area” and “observer’s visual system” as long with “the observer’s experience” (IEV no. 845-02-
18). As we can see, two more equally important components are necessary for the perception of
colors so that we have a total of three components that are involved in the perception:

1.	 The light source

2.	 The object or surface of the object

3.	 The observer3

Only in combination, these three components create that what we experience as color.

To get hold of the color reproduction problem, we first need to find a way to describe color
objectively. As we can guess from the definitions above, this is a somewhat complex task. On
some components, especially those involving the observer, we do only have little if any influ-
ence. Others, especially those involving the visible radiation, we can influence somewhat easily
with the help of technical tools.
To get a consistent color representation, we need to keep the resulting light stimulus constant and we
need to assure a similar environment setting in which the observer looks at the pictures.

First of all, we need to describe the reaction of the observer to the light stimulus objectively/
empirically. After all, the color sensation is triggered by light stimuli. And light is an electro-
magnetic wave that can be described empirically4. In the past, there have been multiple research
studies focusing on how colors can be described, categorized and compared with each other.
These studies resulted in the so-called color models.

3 More specifically the observer’s visual system as described below.
4 In literature, light or ”visible radiation” (IEV no. 731-01-04) is defined by the CIE as “any optical

radiation capable of causing a visual sensation directly on a human being” (IEV no. 731-01-04). The part

 The Visual System 13

The Visual System

The main purpose of color models is that of describing and categorizing colors in an empiri-
cal way. Color models are based on the human visual system, that means they describe objec-
tively what happens inside of the human observer’s head. Therefore, we need to take one step
back again and look at how our visual system processes and creates color impressions.

The visual system is “the part of the central nervous system […] that enables to process visual
detail” (wikipedia/visual system). It consists of four main parts (c. Heavens, 208):

1.	 The optical system of the eye

2.	 The retina of the eye

3.	 “The optic nerve which transmits the information to the visual cortex.”

4.	 The virtual cortex, “a central processor” that filters and reorganizes the color informa-
tion coming from the eye.

These parts can roughly be grouped into two main parts:
A “front end” that includes everything that happens within the eye, and a “back end” that in-
cludes everything that happens inside the brain or on the way to the brain. Everything related
to human vision including the perception of color requires a balanced interaction between both
eyes and brain – with both parts being equally important.

What happens to a beam of light that enters the human visual system can be described as fol-
lowing: The cornea and the lens (1.) focus the beam of light on the retina (2.) with two different
types of photo receptors. Receptors are responsible for translating light into electrical signals
that are then handed to the optic nerve (3.). Finally, the information is processed and interpreted

of the electromagnetic spectrum that can be perceived by the human visual system lies typically in the
region between λ = 360 nm (min) and λ = 830 nm (max) (Sharma, 16).

Figure 2-3 The human optical system

Part A: What is Color Management? The Visual System

in the brain, more precisely in the visual cortex (4) (c. Heavens, 208).
Another important thing is to understand that color is not an attribute of the light itself. The percep-
tion of color requires both electromagnetic radiation and an observer: There is no color without an
observer5.

The Rods and the Cones

What happens on the retina is most important for us at this point. We distinguish between
two types of photoreceptors: cones and rods.

Rods are very sensitive to light and are active even when the luminance level is very low6.
Rods do not distinguish between different wavelengths, they can merely sense the intensity,
they are responsible for our perception of dark and bright.

Cones in contrast are those that enable color vision. There are three different types, each is
sensitive for a different part of the visible spectrum: S (for short wavelength sensitive cones, sen-
sitive for what is perceived as “bluish” colors), M (medium wavelength sensitive cones, perceived
as “greenish” colors) and L (long wavelength sensitive cones, perceived as “redish” colors) (c.
Sharma, 20)7.

Trichromatic Theory

The empirically evidence for the existence of the different cones at the beginning of the 20th
century was an important affirmation for a theory that has been developed by Thomas Young
and Herman von Helmholtz earlier in the 19th century called trichromatic theory aka Young-
Helmholtz theory (c. Willumsen, 18). Helmholtz pointed out that for any given color impression,
there is not just one type of photoreceptor on the retina that is being stimulated but three differ-
ent types of them8. What is more, the trichromatic theory states that every perceivable color can
be produced “by using only combinations of light from three light sources” (Sharma, 22) with the
primaries being typically red, green and blue9.

5 This fact is called the “stimulus error” and was described by John Isaac Newton as following: “The
rays […] are not colored; in them there is nothing else than certain power and disposition to stir up a
sensation of this or that color” (through Sharma, 18).

6 Such situations are called scotopic vision (see CIE’s definition for scotopic vision under IEV no. 845-
02-10).

7 Cones are not very sensible to light and are only active when the luminance level is very high (c.
Sharma, 163). This situation is called photopic vision (see also CIE’s definition for photopic vision under
IEV no. 845-02-09).

8 Moreover there is always one cone that reacts strongest and the two other that react less intense (c.
Willumsen, 18).

9 In the 19th century, Ewald Hering described another theory explaining the sensation of colors
called the opponent color theory, aka Hering theory (c. Willumsen, 19). This theory states that the hu-
man visual system is based on two axes consisting of two opposites pair: a red-green axis and a blue-
yellow axis (c. Sharma, 55). The two theories were looked upon as competing, exclusive ones, but newer
researches stated that both explanations apply for the human visual system: Firstly, the color stimuli are
processed trichromatic on the retina. Then, they are processed “opponently” on their way to the visual
cortex (3.)(c. Sharma, 55).

Color Matching Experiments 15

Color Matching Experiments

The trichromatic theory was the starting point of several experiments organized and imple-
mented by John Guild and W. David Wright in the late 1920s – the so-called color matching
experiments (c. Green&al., 22). In a color-matching experiment, the observer looks on a sample
field that is divided into two areas: The one half of the sample field is illuminated by the original
color stimulus, whereas the other is illuminated by the light of three primary wavelength (being
460 nm, 530 nm and 650 nm) (c. Green&al., 22 and Sharma, 28). The observer is able to adjust the
intensity of the three primary wavelengths until he/she perceives a match between the original
stimulus and the combined wavelengths. In this way, Guild and Wright where able to produce
curves that reflect the “amounts of primary wavelengths […] required to match the spectral
colors” (Green&al., 22). This means, they could reproduce any color within the visible spectrum
using only the three primary wavelengths. Eventually, they calculated mathematical functions
from these results.

The knowledge of these functions was eventually put on a theoretical foundation and adopted
by the CIE in 1931 (c. Green&al., 23). The CIE called the (virtual) primaries X, Y and Z and the
resulting color matching functions are since then referred to as the CIE 1931 Color Matching
Functions (CMF) aka X(λ), Y(λ) and Z(λ) (c. Green&al., 23).
That was the birth of the so-called “color appearance models” (Sharma, 172) that provided an op-
portunity to describe any given light stimulus empirically with the help of these color matching
functions.

First of all, colors could now be described objectively using the three CIE 1931 CMF. Colors
could be measured empirically with the help of a colorimeter or spectrophotometer and then
translated into the standardized CIE 1931 XYZ color space.
This is very important for our own solution to the color reproduction problem as well because
now we can detect and describe differences between the color stimuli coming from different de-
vices objectively. Fortunately, this is exactly what we are going to do in the evaluation part later.

Color Spaces

I know, the color matching functions sound rather abstract and rather hard to relate to. That
is where a visual representation, a so-called color space, comes in handy. The CIE defines the
color spaces as following:

A color space is a “geometric representation of colors in space, usually of three dimen-
sions” (IEV no. 845-03-25).

The XYZ color space for example represents a visualization of all visible colors as described
with the CIE 1931 Color Matching Functions. Every visible color has an allocated coordination
within the XYZ color space that identifies the color uniquely (see Figure 2-4).

Of course, 3-D visualizations were very difficult in the 1930s, and people thought of a way to
present a 3-D graph in two-dimensional media like books and papers. Scientists decided to dis-
play only a cross section of the two-dimensional graph and they agreed on the part of the graph
where all three coordinates sum up to one, the so-called unit plane (c. Sharma, 35).

Part A: What is Color Management? Color Spaces

The resulting graph is called the chromaticity diagram10 (see Figure 2-5) and it shows the hue of
a given color stimulus – in the same time as it discards any information about its brightness or
intensity (c. Sharma, 35).

Moreover, a color space like CIE 1931 XYZ allows us to calculate the difference between to
color stimuli with the help of a so-called color difference formula. The most simple difference
formula is the euclidean distance between two color coordinates in the three-dimensional color
space (c. Sharma, 42). With a color difference formula, we now have the possibility to compare two
colors within the model. The formula gives us an indicator how close respectively how far two colors
are afar from each other.

Uniformity of Color Spaces

However, the CIE 1931 XYZ color space and its Euclidean difference formula was unpractical
for some reasons. It was criticized that the perceived color difference of color samples does not
result in the same empirical color difference (c. Sharma, 41). The color space is close enough to
describe colors objectively but it does not relate very much to our perceptual experience of color.
In one experiment, scientists showed observers different color samples and the observers were
asked, whether they could see a just noticeable difference between the samples or not. Then, the
scientists would compared the CIE 1931 XYZ values for the samples that were perceived as being
identical (c. Sharma, 42). The result was that the relations between the objective measured dif-
ference and the subjective perceived difference vary strongly throughout the spectrum: The CIE
1931 XYZ is not uniform (c. Sharma, 41). This means that identical empirical color differences of
two color stimuli do not result in constant perceived differences.

10 aka shoe sole or horse shoe unofficially

Figure 2-4 3-D representation of the XYZ
color space

Figure 2-5 2-D representation/chro-
maticity diagram of the XYZ color space

Color Spaces 17

CIE 1979 L*a*b* and its ΔE formula

This is one of several reasons why scientists developed several other color models which
provided, among other things, a more adequate color difference formula: I want to name the CIE
1979 L*u*v* and the CIE 1979 L*a*b*, because they are the most common ones. They both have the
one thing in common that their coordinates L, u and v respectively L, a and b are derived from
the original CIE 1931 CMF in a way that each of the three axes represents one specific attribute
of color (c. Sharma, 42ff and Green, 53f)11. Why is it important to talk about these color spaces?
Because CIELAB provides a color difference formula that will be very useful later in the evalua-
tion part of this thesis (Part C) to calculate the difference between two color patches on the main
and the extra screen. The color difference formula is basically the Euclidean distance between
two color coordinates within the three-dimensional CIELAB color space and it looks like this (c.
Sharma, 44):

Gamuts

After this theoretical excursion, we will now go back to our original problem, the color repro-
duction problem. As I mentioned before, no display is capable of producing every existing color.
Screens for example can only display a certain range of colors that is reproducible with the three
primary colors. Can this range of colors be visualized and if yes, how does it look like compared
to the original CIE 1931 XYZ color space?

To begin with, the answer to the first question is of course yes. This range is called color gam-
ut and it is defined as the “range of colors achievable on a given color reproduction medium […]
under a given set of viewing conditions” (Green&al., 300). The gamut can be described as a subset
of the original XYZ color space containing only those colors that can be reproduced with the
help of the device’s primary colors. Like the original color space, the gamut can be visualized as
a color space both three-dimensionally and two-dimensionally. For the two-dimensional repre-
sentation, one draws typically the boundaries of the gamut in the XYZ chromaticity diagram.
As we can see on the picture below (see Figure 2-6), all reproducible colors of a typical screen lay
within a triangle, whose corners a marked by the devices primary colorants.

Gamuts are very individual to every single device. We can truly say that there are as many
different gamuts as there are devices. As we will see shortly, one key to solving the color repro-
duction problem is to “translate” between different device gamuts. To get this variety of gamuts
organized, scientists and companies created so-called generic color spaces, which can be defined
as gamuts that are “based on virtual output devices” (Green&al., 396). In other words, these
generic color spaces represent the gamut of a virtual screen, printer or any other color reproduc-
tion device that reacts in an optimal way. The most famous generic color spaces are probably
sRGB and Adobe RGB (more about them later). The specifications of such generic color spaces
define a color space with a set of virtual primaries that define the colors they can produce.

11 For the CIELAB color space, for example, the L* axis represents the luminance level, whereas a*
represents the red-green axis respectively b* represents the yellow-blue axis (c. Sharma, 45).

Part A: What is Color Management? Color Spaces

To sum up, we put on the record that with the CIE 1931 XYZ respectively the CIE 1976 L*a*b*
color spaces, we have two color appearance models that are very helpful to describe the color
reproduction problem empirically. On the one hand side they allow us to describe color stimuli
objectively with the help of the color matching functions. And on the other hand side, they give
us a tool to measure and evaluate the difference between two given color stimuli. We will now
take a step forward to tackling our color reproduction problem and – with the help of the tools
we learned about in this chapter – we will describe a solution to the problem.

Figure 2-6 The chromaticity gamuts of
sRGB, Adobe RGB and a CMYK color space

Color Spaces 19

The Definition of Color Management

Color management can be defined as tool to “provide predictable and consistent color results”
(Green&al., 247). As we discussed before, there are two aspects of the color reproduction prob-
lem. For both aspects, color management has to provide a solution.

Firstly, there is the problem of translating color information between different types of media
devices. Imagine we import a picture from a camera into the computer for displaying it on the
screen, or we print a picture after having it edited in Photoshop. The first thing we have to be
aware of is this: Most of the time, when we transfer color data between two different kind of
media, the original data gets altered in some way. The camera contains a CCD chip that trans-
forms photons into electrons, the screen uses three primaries red, green and blue to combine
colors additively and the printer mixes four inks cyan, magenta, yellow and black subtractively.
Three different devices, that means three different ways of producing color. With what we have
learned in the previous paragraphs, we can further say that all three devices are based on three
different color spaces. That implies that they can only produce a certain range of colors, a cer-
tain gamut. Let us assume the camera is typically based on an Adobe RGB color space, whereas
the screen uses a sRGB based color space and the printer a CMYK based color space.

Imagine now, we go from capturing to displaying on screen to printing. We can not just keep
the data as it is, because we would necessarily be confronted with values from one color space
that could not be interpreted in another color space. What we have to do is this: We have to
translate the color information between the color spaces. And what is more, we want to trans-
late it in a way that we have as few loss of quality as possible. Additionally, we want to have the
translated picture to look as similar to the original picture as possible.

Thus, we take a note that the first task of color management is to translate between color spaces
that are fundamentally different from each other.

Secondly, imagine we use the same kind of color reproduction device but two different
individual devices. We look at one and the same picture on two different screens. We will see
different color appearances even if the original data stays constant. For example when we take a
constant set of input color data and we measure the trichromatic values in CIELAB or CIEXYZ
that are emitted from two different screens, we will get results that are different both from each
other and from the original data. But in an optimal workflow, we want the actual reproduced
data to be the same as the input data. On the other hand, two screens may produce colors in the
same way using the same kind of primary illuminants. Nevertheless the performance can turn
out slightly different based on technical differences. The CIELAB or CIEXYZ values are not only
different from the original data, but they are different from each other as well12.

We make another note, that the second task of color management is to control the color reproduc-
tion performance in a way that the reproduced values are identical to the input data.

12 This could be due to the quality or consistency of led illuminants being used. LCDs for example
are known for changing their performance over time. We want both screens, however, to produce the
same color stimulus that stays constant over time.

Part A: What is Color Management? Gamut Mapping

In other words, imagine we measure the difference between two color stimuli of the same
input color information being displayed on two different screens. The goal of color management
in display technique would be to keep the color difference for identical color input information
on different media devices as small as possible. The goal is to get “near-identical image represen-
tations” (Green&al., 248) on different capturing respectively output devices.

Gamut Mapping

How to tackle transformation between different color spaces and gamuts will be our next
topic. Let us go back to the three gamuts for the camera, the screen and the printer we discussed
above. We saw that there are many colors that can be recorded with the camera, which cannot
be seen on a screen or on a print. In the same way, there are plenty of colors that cannot be seen
on the screen, but which can be printed out on a paper. This situation is called “color mismatch”
(Sharma, 648). Let us take a look at the gamut pictures of the color spaces combined in one single
coordinate system. As we said before a gamut can be represented as a volume in a bigger color
space e.g. CIEXYZ. Furthermore, a gamut has a surface that is called “gamut boundary” (c. Shar-
ma, 649). Application like ColorSync make it possible to visualize gamuts of ICC profiles by map-
ping these gamut boundaries in a three-dimensional coordinate system. Moreover, ColorSync
makes it possible to compare the gamut boundaries of two color spaces like for example two
RGB color spaces (see Figure 2-7).

In the picture, we notice that some parts of both gamuts overlap and others do not. The parts
that do not overlap (the white parts) are the very color mismatches. If we sent an unaltered
value from the camera that is a color mismatch for a printer to the printing device, we would, at
its best, get some confusing results. The printer would map it to a random color. The printer does
not know how to interpret the color information, because it lies outside its range of producible
colors, outside its gamut. What we have to do is to “alter the original colors to ones that [the]
given medium is capable of reproducing” (ibid.). This can be done easily by applying a mathe-
matical function that maps every value of the original color space onto values of the target color
space. This procedure is referred to as “gamut mapping” (ibid.).

Gamut algorithms

The functions that are used to implement gamut mapping are called “gamut mapping algo-
rithms” (Sharma, 669). And there are different approaches for designing a mapping algorithm.

Gamut Clipping and Gamut Compression

The basic one is that of gamut clipping (c. Sharma, 670), which means that the algorithm af-
fects only such colors that lie outside of the target color space. These values from the original
gamut are most commonly mapped to the nearest point on the gamut boundary. Values that lie
within a subset of both gamuts stay unaltered. Problems with a such algorithm are mostly the
loss of details, change in colors and a reduction of details (c. Sharma, 673f).

Gamut algorithms 21

The second basic mapping algorithm is that of gamut compression (c. Sharma, 677). In opposite to
the clipping algorithm, the compression algorithm is applied on all values of the original gamut
– not just the out-of-bound values. This means that the distances between multiple points of the
original gamut stay proportionally the same in the target color space. The advantages of a com-
pression algorithms are that they preserve the original’s variation with the cost of a reduction in
chroma (c. Sharma, 680).

Both algorithms have their pros and cons, depending on which part of a color space they are
applied on. That is why there have been attempts of combining the advantages of both types.

This third type of mapping algorithms is called composite gamut mapping and is based on
combining elements of gamut clipping with elements of gamut compression (c. Sharma, 681ff).

Whichever of these three types of mapping algorithm should be used depends on the kind of
input data and the user’s intentions. One could for example ask if the input data is a presenta-
tion chart that contains only iconographic pictures or if it is a photographic picture with many
different colors and gradients. Also, one could ask about the accuracy of reproduction that is
needed. Should the data be displayed on the Internet without need of accuracy but with the
necessity of “looking good” at all means? Or is an accurate reproduction of an original needed
for example a canvas painting of the 19th century? Of course, the user is not required to choose
a specific mapping algorithm by himself, but it is very common that a color management work-
flow provides more user-friendly choices that result in different mapping algorithms.

Rendering Intents

A very common color management workflow is that of the ICC, which will be described in
the next paragraph. The ICC defines four so-called rendering intents that use different mapping
algorithms (c. ICC “Introduction to the ICC profile format”, all following quotations taken from
this side as well):

Figure 2-7 Comparison of two RGB color spaces in
ColorSync

Part A: What is Color Management? Gamut algorithms

•	 Perceptual intent: Main goal is to “preserve detail throughout the tonal range” at the
cost of exact contrast.

•	 Saturation intent: Main goal is to “preserve the vividness of pure colors” at the cost of
exact hue. Useful for charts or diagrams.

•	 Media-relative colorimetric intent: “Rescales the in-gamut […] such that the white point
of the actual medium is mapped to the white point of the reference medium”.

•	 ICC-absolute colorimetric intent: “In-gamut colors are unchanged”. Useful for spot colors
or proofing.

The last two colorimetric intents focus on preserving in-gamut values and would thus typi-
cally apply clipping algorithms respectively composites with focus on clipping. Whereas the
first two would typically hold on to compression algorithms respectively composites with focus
on compression.

To sum up the previous paragraph, we looked at how color values can be translated from one
gamut to another via gamut mapping. We learned about the different gamut mapping algorithm
types that can be used and we looked at the rendering intents that help us choosing the algo-
rithm that best suits our needs. Our next step would be to investigate in how this algorithms
would typically be implemented technically.

Intermediate Color Space

But first, we have to consider one more thing: We have to choose an adequate method for
encoding our data, that means we have to choose a color appearance model that represents our
color values. We have to choose an intermediate color space (c. Sharma, 254&652). An intermedi-
ate color space is basically a device-independent color space, in which all color transformations
take place. Why do we need that? The colors being reproduced by a device are based on a device-
dependent color space. The colors reproduced by a typical LCD screen for instance are based on
a 8bit RGB color space. That means that every color can be described in terms of a triple of val-
ues between 0 and 255. The color green for example would be defined as (0 / 255 / 0), blue as (0 / 0
/ 255) and so on. However, according to the color reproduction problem discussed above, a given
RGB triple does not result in the same color stimulus when reproduced on different screens. The
device-dependent RGB values may be the same, but the device-independent CIELAB values –
they have to be determined by a measuring instrument – are different. That is why we need to
describe device-dependent values in a device-independent color space first. That is why we need
an intermediate color space.

The right choice of intermediate color space depends on different aspects (as discussed at
Sharma, 254&652). Typically the intermediate color space is a superset of the gamuts being
involved. (It has to be capable of describing all device-dependent values after all.) Intermediate
color spaces one could use include for example CIELAB, CIEXYZ or CIECAM9713. The optimal
choice depends strongly on the rendering intents, because all color spaces have their pros and
cons for different goals. If the goal is to preserve the most accurate colorimetric representation,
one would typically stick to either CIELAB or CIEXYZ. If the goal is to preserve the most pleas-

13 A color space that takes into account the viewing conditions along with the colorimetric values.
Check Sharma, 176ff for further information.

Lookup tables 23

ant representation under changing viewing conditions, one would preferably stick to CIECAM97
(c. Sharma, 653). Also one has to take in account, in which color space a designated gamut map-
ping algorithm works best.

Lookup tables

When it comes to implementing gamut mapping algorithms, there are basically two tools
that proved to be best-practice: lookup tables and interpolation.

The purpose of a lookup table is to “precompute the transform for all possible digital inputs
and store the corresponding outputs” (c. Sharma, 695). Typically a LUT for a screen RGB color
space is visualized as three-dimensional lattice (c. Sharma, 696f and see Figure 2-4). Every node
represents a value in the original space and carries the values of the corresponding point in the
target space. In praxis, however, a lookup table is not implemented as actual three-dimensional
lattice. Most often, a lookup table is just a text file containing a list of values. Every line rep-
resents a node in the source color space and the values represent the values in the target color
space.

A single lookup table works very well for small gamuts. However a purely lookup table based
transformation would lead to performance problems when dealing with bigger gamuts. The size
of a such LUT depends strongly on the numbers of primaries and the depth of details. Let us
look at the sizes of some typical LUTs that include every single value (ibid.):

1.	 8 Bit RGB (for example standard screen): 3 · 23·8 = 3 · 224 = 3 · 24+20 = 48 MB

2.	 8 Bit CMYK (for example standard printer): 4 · 24·8 = 4 · 232 = 4 · 22+30 = 16 GB

The size of one single LUT like this is already vast for itself and now keep in mind that this
LUT has to be applied to every single pixel within the picture to be transformed. This is some-
thing only few CPUs and old graphic cards can handle.

Interpolation

The solution to this problem is fairly easy. One uses a LUT which defines a “lattice of nodes
that partition the input color space into a set of smaller subvolumes” (Sharma, 695). In other
words one defines a LUT using a smaller sampling that is only a subset of the original gamut.
Afterwards, one uses “multidimensional interpolation for [any] input point that do not coincide
with the LUT nodes”. Whereas interpolation is defined as “a method of constructing new data
points within the range of a discrete set of known data points” (wikipedia/interpolation). In
other words, when translating from the original to the target color space, this is what is going to
happen: Given a specific input value, the processor tries at first to find a matching node on the
LUT, and if that does not exist, it interpolates the missing value from the existing values on the
lookup table14.

14 The exact interpolation geometries and formulas are discussed at Sharma, 11.2.2 and 11.2.3. But
they are not important for our investigation right now.

Part A: What is Color Management? Interpolation

Given this background information, we can describe lookup table combined with multidi-
mensional interpolation as following (c. Sharma, 695f):

1.	 Firstly, we find the subvolume of the lattice that the input value is element of.

2.	 Then, we retrieve the nodes that define the subvolume.

3.	 Finally, we interpolate the output value with the help of the corresponding values in
the output color space of the retrieved nodes.

Using a combination of lookup tables and interpolation is from a computational standpoint
usually less expensive than purely lookup table based gamut mapping. Most graphic cards
handle interpolation rather fast. The speed can additionally be increased by caching certain
node values (c. Sharma, 710).

To sum up, we have seen that color management requires gamut mapping between different
color spaces. Which mapping algorithm to use depends on the user’s intents. Usually these map-
ping transformations are implemented through a combination of lookup tables and interpola-
tion.

As end-users, we usually do not have to worry about mapping algorithms. Many color
management workflow exist that implement various different algorithms and that let us choose
different options depending on our actual intent. The most common used color management
workflow is that of the ICC, which I will discuss in the next paragraph.

ICC components 25

The ICC workflow

We will now take a closer look on how to implement color management, that means how to
translate between multiple color spaces.

Closed-loop vs. device-independent

To begin with, we can say that there are basically two ways of organizing color management:
A closed-loop workflow and a device-independent workflow (c. Sharma, 283). A workflow con-
sists usually of multiple devices. There are various input devices like cameras or scanners and
output devices like screens and printers. Whenever we transfer data from one device to another,
we have to apply color management.

A typical closed-loop workflow would translate directly from one device’s color space to the
other device’s color space. Or in other words a “specific […] device is optimized for rendering im-
ages to a[nother] […] device” (Sharma, 283). The problem with this workflow is the vast number
of transformations that needs to be implemented. Imagine you work in a media department that
owns three photo cameras and you have four employees with each his/her screen. You would
need exactly 3 · 4 = 12 color transformations for a complete closed-loop color management (c.
Sharma, 254). Now imagine a very big media department with multiple cameras and multiple
employees, you would need to apply a total of number of cameras multiplied with the number
of employees to get a valid color management. And it becomes even more complicated if we
take into account printers and other devices as well. This is highly ineffective; such a workflow
should not be used for large scales. A closed-loop can work though for a small, relatively restrict-
ed workflow with a manageable numbers of media devices.

For a complex setting, the device-independent workflow is much more suited. In such a
workflow, every device is independently translated into a intermediary device-independent
color space (c. Sharma, 283). This way, every device has to be translated just once, which means
that the total number of transformations equals only the sum of numbers of devices involved. A
media department with 12 cameras and 35 screens results thus in 47 transformations assuming
that we apply a device-independent workflow (in contrast to 420 transformations with a closed-
loop workflow). The intermediary device-independent color space is usually identical with the
intermediary color space that is needed for the gamut mapping transformations we talked about
before. One would typical use a standard colorimetric color space like CIEXYZ or CIELAB.

The benefit of a device-independent color management workflow is not only that of fewer
transformations. It is also easily portable between different platforms and it can be extended by
an almost unlimited number of additional devices. In fact the number of involved devices is not
important because it is only the transformation into the device-independent color space (DVI,
after Sharma, 104) that is relevant. In praxis such a workflow would work look like this: A pic-
ture taken from one camera is translated into the DVI.

Part A: What is Color Management? ICC components

ICC components

A very common implementation of this workflow is that of the International Color Con-
sortium (ICC) that is used in most operating systems like Mac OS and Windows. The ICC color
management architecture consists of four main components (c. Green&al., 249):

1.	 The color management framework
It is “responsible for the most important color management functions” and it “provides
an interface to the various color management methods” (ICC “Color Management:
Current Practice”). On Macintosh computers this framework is called ColorSync and it
provides a bunch of methods and functions to access profiles etc. We will see more of
ColorSync in Part B.

2.	 The color management module (CMM)
It is responsible for connecting color spaces by computing any transformations or
interpolation between the two color spaces that is needed (c. Green&al., 249). It creates
a link between the two profiles (s. profiles) of the original and the target color spaces.
Most operating systems and some applications15 have a default CMM that is capable of
applying basic color transformations. The ICC architecture knows on the other hand no
limitation of CMM extensions. That means any third party CMM can enhance a default
CMM. The main task of my bachelor thesis will be to program such a CMM extension
for the Drylab Keyframe application.
Another important thing related to the CMM is the question of the right Profile Con-
nection Space (PCS), in which all transformations take place. More about the PCS just
below.

3.	 The application
Any application can use one of the default or 3rd party CMMs to handle color man-
agement. As mentioned above, we will look at the Drylab Keyframe application that
implements such an ICC architecture under Part B.

4.	 The ICC profiles
The profiles define the device models involved in the workflow “by providing the
relationship between the device coordinates and those of the reference color space [the
PCS].” They are so to speak the dictionary from the device’s color space into the inter-
mediate color space.

The Profile Connection Space (PCS)

As we saw above, the whole ICC color management workflow is based on the idea of comput-
ing all transformations through a common device-independent color space. This color space is
called Profile Connection Space (PCS). As it name suggests, its main purpose is to provide “an
unambiguous connection between the input and output profiles […]. It is the virtual destination
for input transforms and the virtual source for output transforms” (ICC “Introduction to the ICC
profile format”). What does that mean? Imagine we import a picture from a camera in order to
display it on a screen. With a well adjusted ICC architecture, this would work like this: First the

15 Especially image processing applications like Photoshop or Avid.

ICC components 27

image data is translated from the camera’s color space into the PCS, and eventually the color
information is translated from the PCS into the screen’s color space. Usually the PCS is one of
the CIE-based reference color spaces like CIELAB or CIEXYZ (c. Green&al., 249).

With the PCS, we only need one transformation for each device to respectively from the PCS.
And this transformation stays somewhat constant over a reasonable period of time (s. calibra-
tion and characterization below). Now, we just need a way to attach this information about
transformation to the device so that it could easily be read and used by any CMM. This attach-
ment exists and it is called an ICC profile.

Part A: What is Color Management? Device calibration

The ICC profiles

The ICC profiles are data files that provide “the information necessary to convert color data
between native device colour spaces and device independent color spaces” (ICC.1:2004-10, 9). The
ICC profile describes the device and its color characteristics. These are the most important infor-
mation that can be included in an ICC Profile (c. Green&al., 253):

•	 The transformation data that is needed to convert color information from the device’s
color space to the PCS in form of one or multidimensional lookup tables.

•	 Information about how to convert from the PCS back to the device’s color space if
needed. This is not required for all types of devices. Input devices do not need that kind
of information for example because they merely collect color information that is trans-
ferred into the PCS. Output devices however necessarily need that kind of transforma-
tion in order to display a given input data correctly.

•	 Metadata that describe the device. This metadata includes name and type of the device,
brand, company, its color characteristics like white point and coordinates of primaries
etc.

The ICC file format is based on a tag-based structure (c. Sharma, 253 and see Figure 2-8), that
means it provides a set of predefined tags, between which the data is stored. More than that, the
ICC made it possible to include a variable amount of tags that can be defined by 3rd parties as
required. There is for example a predefined tag called technologyTag that contains information
about the device’s technology such as film scanner, LCD or ink jet printer (c. ICC.1:2004-10, 49).
Another tag called copyrightTag contains information about the profile copyright information
(c. ICC.1:2004-10, 105) and so on. The tags that are most interesting for us – translating into and
from the PCS – are called redTRCTag, blueTRCTag, greenTRCTag and some others.

What kind of data is stored and how we can use this data for proper color management? This
question is closely related to how we get the transformation from device-dependent color space
to DVI in the first place and how to make sure that this relation stays constant over time.

Device calibration

The color performance of one and the same device can vary drastically over time. This is
because the technical elements get used up etc. It is therefore most important that we put our
device in a known state before we begin our actual color management.

Figure 2-8 Tags of an ICC-profile

Device characterization 29

This process is called calibration, which is “the process of maintaining the device with a fixed
known characteristic color response”. As we discussed above, any given input data may result in
a wrong color representation.

Nakamura describes this problem as following: “Many imaging devices have nonlinear
characteristics when it comes to the process of capturing the light of a scene and transforming it
into electronic signals. Many displays […] have nonlinear characteristics” (Nakamura, 233). This
phenomenon is often visualized with the help of so-called tone reproduction curves (TRC).

TRCs can be plotted for each channel individually or all three combined as gray scale TRC.
For a individual channel, the input values from 0 to 255 are plotted against the measured lumi-
nance in order to obtain the channel’s TRC (c. Sharma, 284). A typical result can be seen above.

As we can see, the input values are not plotted linear, but in a irregular curve. This is what
Nakamura meant by saying “nonlinear characteristics”. Another way is that of gray-balancing,
where “equal amounts of device color signals (e.g., R = G = B or C = M = Y) correspond to device-
independent measurements that are neutral or gray (e.g. a* = b* = 0 in CIELAB coordinates)”
(Sharma, 284).

Device calibration means to use these TRCs “to linearize the device” (Sharma, 717), in other
words to linearize the output performance. Given the nonlinear TRCs, the CMM can easily com-
pute the inverse functions for each channel, which “neutralize” the nonlinear TRCs. After the
inverse TRC functions are applied, the result is a linear output performance. And a linear output
performance means that our device is put in a known state. We can now begin to characterize
the data with respect to the PCS.

Device characterization

Device characterization is defined as deriving “the relationship between device-dependent
and device-independent color representations for a calibrated device” (Sharma, 285). In other
words it is the process when every value in the device-depended color space is mapped to a val-
ue in the PCS. There are two types of characterizations, forward and inverse characterizations:
“The forward characterization transform defines the response of the device to a known input,

Figure 2-9 Red channel TRC Figure 2-10 Green ch. TRC Figure 2-11 Blue ch. TRC

Part A: What is Color Management? Device characterization

thus describing the color characteristics of the device. The inverse characterization transform
compensates for these characteristics and determines the input to the device that is required to
obtain a desired response.” (Sharma, 286)

The characterization is slightly different for input and output devices, for output devices like
screens or printers, this looks as following:

•	 Forward characterization
A given device-dependent value is displayed on the screen and measured in order to
obtain the device-independent coordinates (c. Sharma, 286).

•	 Inverse characterization
Defines to each device-independent coordinate the required device-dependent input
that is need to gain this very device-independent output.

Technically, characterization is done by measuring empirically the signals of a set of color
samples that are shown on the screen. The color samples typically include a limited range of
shades of the primary and secondary colors plus a set of memory colors and the device-depen-
dent values of these color samples is known. Then, the output values in the device-independent
color space are measured with the help of a colorimeter, a spectrophotometer etc. Finally, the
output data is related to the input data in form of a lookup table. The inverse of that LUT can
eventually be used as foundation for a gamut mapping algorithm between PCS and device-de-
pendent color space.

To sum up, we learned now how to work with a color management workflow that is based on
a device-independent color space using the example of the ICC workflow. We then learned the
different components of the ICC workflow, especially the profile connection space (PCS) and the
ICC profiles.

Now, we have everything we need to know about color management in general to program
our very own color management module for Keyframe. What is more, we need to find out how
the CMM in the Mac OS works and what functions we need to add to gain an optimal color
management for our pictures.

The Default Mac OS CMM 31

The Macintosh Color Management Module

The Default Mac OS CMM

The Macintosh Operating System (Mac OS) uses a color management architecture that is
called ColorSync. Apple says: “ColorSync […] provides an interface to system-wide color man-
agement settings” (Apple “ColorSync Manager Reference”). In other words, ColorSync provides
an interface that allows programmers to program a color management module (CMM) for a
given application. As we will see in part C, Drylab’s Keyframe is an application that runs ex-
clusively on Macintosh computers and that is why I used the ColorSync framework to program
Keyframe’s very own CMM. Before jumping into planing Keyframe’s CMM however, we will
first look at the default CMM that is used by the Mac OS. This way, we can avoid redundancies.
We do not have to start our own CMM from scratch but we just need to implement the functions
that are not included in the default CMM yet.

In the Mac OS, we have the possibility to upload a screen profile – one we got after calibrat-
ing and characterization the screen for example as described later under part C. Then the Mac
OS calibrates the screens independently with the help of the “vcgt”-tag.

It does not implement, however, an inverse characterization function, that means it does not
properly map from device-dependent color space to device-independent color space. It displays
device-dependent input data arbitrarily. In other words, we have no way of knowing how any
given input data is displayed in terms of a device-independent color space.

Let us follow a picture through the Mac OS color management process. We assume our pic-
ture is encoded in sRGB color space that means every color information is processed as a triple
of values from 0 to 255 for each of the channels red, green and blue. As mentioned above, the
sRGB color space is a color space that is based on a optimal virtual output device16. The sRGB
specification contains information about the CIEXYZ coordinates of the virtual primaries and
it defines how to translate from sRGB device-dependent color space to device-independent color
space CIEXYZ (c. IEC 61966-2-1:1999). With this specification engineers created a sRGB profile
that can be attached to any image like the one we are using for this example. Furthermore, the
sRGB profile enables the CMM to compute a transformation that translates any given sRGB
value into a fixed CIEXYZ value by characterization. The default Mac OS CMM does not do that
because it does not enable characterization.

What does that mean for our picture? The image data contains color information that is based
on RGB triples. These triples can easily interpreted by the engine that displays the picture on the
screen because it uses a color space that is based on sRGB. However, the CIELAB values it finally
displays on the screen, after the calibration function is applied, are not identical with those that
are defined by the ICC sRGB specification17.

16 The color space was originally developed for CRT monitors.
17 That is because the coordinates of the primaries are slightly different for the actual screen than if

compared with the optimal virtual device’s primaries.

Part A: What is Color Management? The Default Mac OS CMM

What can we do to improve that? – We need to enable characterization.
That means we need to find a way to compute a transformation from sRGB to the screen’s color
space so that the screen displays the right CIELAB values according to the sRGB profile. This
transformation would transform the original sRGB triples in screen triples that produce the
desired color response. My main task for this assignment will be to enable this characterization
for Drylab’s Keyframe by computing lookup tables for the pictures, which are based on the ICC
profiles of both the computer screen and the original picture.

To sum up, we saw what tools and engines are provided by the Macintosh Operating System.
We found out that the default Color Management Module implements calibration only. That
means we need to enable characterization for application. How this can be done, we will see in
part B.

The Default Mac OS CMM 33

After having explored the theoretical background of color managing, we will now move on
to the practical implementation of a Color Management Module (CMM) for Drylab’s Keyframe
RushesControl application.

Who is Who? And What Is What?

Introducing the Actors

Who is Drylab?

Drylab is a small software company located in Oslo, Norway. It is developing application
components that are aimed at supporting the workflow of film technicians. Two of the main
founders of Drylab are John Christian Rosenlund, director of photography, and Andreas Herzog,
digital image technicia and they have been working in the Norwegian film industry for many
years and have been contributing to some of the most popular films in Norwegian movies dur-
ing the last years1. They both know the working routines on a film set on a daily bases and they
have been thinking about how to simplify them.

Working as a camera assistant for example involves quite a lot of paper work. Paper work
that has to do with the collection of information for each scene. More specifically: The recording
of a movie is divided into multiple scenes, which are divided into sets, which are divided into
takes. All sets involve different camera positions, different focal length, different f-stop values,
exposure times, background information about the lighting settings etc. That is the information
that needs to be collected because it can be very helpful in cases that a shot has to be redone
after several weeks or it is helpful by supporting the color grader at the end of the movie making
workflow. The information has to be collected and organized so that everyone can practically
access and use them afterwards. So far this was done with pen and paper because not many
companies were providing an application to handle this problem. That is the main reason why
Rosenlund and Herzog decided to make an application to organize this information. Eventually,
they got help from Arne Magnus Bakke who is a Ph.D. student for informatic engineering at the
College University Gjøvik and Tariq Islam, and they began working on an application that was
later known as Keyframe RushesControl.

1 Rosenlund for example was the director of photography for “Den brysomme mannen”, a movie that
won three Amanda awards in 2006, which is the highest ranked award in the Norwegian film industry.

part B

Implementing a
Color Management Module

Part B: Implementing a CMM Introducing the Actors

What is Keyframe RushesControl?

Keyframe RushesControl is part of the Keyframe family, which includes workflow tools that
support the collection and organization of information related to the movie recording from the
recording on set, color grading to post production and editing. A film workflow usually works
like this: The director of photography captures the pictures, the pictures are sent to the lab,
where the film gets digitalized. Then, a color grader does his/her job, the post production team
creates additional content and the editor finally puts the different scenes together to a complete
movie.

Within this workflow, the Keyframe concept focuses mostly on the needs of the director of
photography (DoP) and his/her assistants. Keyframe supports the communication between the
DoP and the people working on the picture. For example, the DoP and his/her assistants need to
record technical details on set about the camera settings. Within the Keyframe concept, this can
be managed with the help of CameraReport, an iPhone app that provides a GUI for data input
that is needed, and which sends the collected data to a server for backup. Furthermore, the data
on the server can be accessed by anyone involved in the film project, both immediately under
production or later when needed for other tasks.

Another big task of the DoP for example is that of color grading. The DoP does not usually
do color grading by him/herself, but he/she communicates his/her ideas to the color grader who
sets the colors and mood of the final picture. One way to hand down the ideas is verbally or in
written form, although the disadvantage is very obvious: Words can only vaguely describe, what
later should be seen on the screen. The Keyframe concept offers help in the form of Keyframe
RushesControl, a desktop application that combines the pictures that have been recorded with
the data that has been collected on the set. But what is more, Keyframe provides a grading editor
that allows the DoP to edit a picture after his/her ideas. These pictures can later be exported as
prototypes to the color grader. It is not very common that the DoP applies final color correction,
though, because the software that is needed for the final grading is usually very expensive and
requires a perfectly calibrated environment – something, which is usually not available on the
set. Furthermore, a common grading software does not provide a sufficient interface to organize
the previously collected data.

To sum up, we can see of the basic tasks of Keyframe components on the picture on the next
page (see Figure 3-12). Keyframe RushesControl is an easy-to-use application that is used on the
film set to visualize ideas and to easily communicate with the color grader.

What does already exist?

The Keyframe RushesControl (RC) application is already in its final state of development, that
means the basic and most important features do already exist. Arne Magnus Bakke and Tariq Is-
lam have already programed many features that enable color correction, downloading informa-
tion etc. But one important feature is missing: a comprehensive color management architecture.
Usually, a DoP uses two screens: One main screen for the application with the GUI, buttons etc.
to pregrade the picture and another extra screen to open another preview window so that he/she
can manipulate colors and look at the picture in full size simultaneously.

As I discussed in part A, the Macintosh OS provides color management only to the degree
that it calibrates the monitors. The Mac OS does not however enable characterization. Thus, we
need to program a Color Management Module (CMM) for our Keyframe application that enables

Introducing the Actors 37

Figure 3-12 Basic screenflow of the Keyframe concept

Part B: Implementing a CMM Introducing the Technology

this very feature. Ideally, the characterization should be based on the ICC workflow, which
requires that the CMM gets access to the ICC profiles of the two screens and that it computes
the gamut transformations separately for both screens. Additionally, we want to enable another
feature that allows uploading Nucoda lookup tables, a LUT format that is widely used amongst
film technicians. Moreover, we need a user-friendly user interface that provides a clear overview
of the color management settings. But before all that, we want to look at the technology that we
will be using to program this feature.

Introducing the Technology

The Keyframe application is programmed in C++, one of the most widely spread program-
ming languages in the world. Some of the best known operating systems are programmed in
C++ respectively its predecessor C: Windows, Unix and the Macintosh OS. I will not discuss the
details of the C++ language but I will focus on two of the most important libraries that I used to
program my CMM: FLTK, the GUI library, and littleCMS, the ICC transformation library.

What is FLTK?

FLTK is a “C++ GUI toolkit” (Fltk “Introduction to FLTK”) running on several operating
systems including Linux, Windows and Mac OS. It is a library that provides the most frequently
used GUI elements like buttons, labels or text areas and offers a framework to easily access and
integrate their functionality into our own application.

Why do we need such a library? Imagine we did not have a library that provides a consis-
tent GUI framework. We would have to program every graphical element that is shown on the
screen from scratch by hand. This would not be very effective as we wish to focus mainly on
the functionality of our data organizing and pregrading features. On the other hand, the FLTK
library offers a whole bunch of classes and functions that can easily be altered to present the
desired graphical element on the screen. Those functions include for example the event handlers.
When we click on a button, an event is triggered and we can allocate multiple behaviors like
for example opening a menu or showing a preview. Frameworks like FLTK handle the back-end
work of events like that. Thus, we do not have to worry about how to trigger an event but we can
focus on what we want to happen after the triggering. And thus focusing on the functionality of
our program.

What is littleCMS?

LittleCMS is a “small-footprint color management engine” (LittleCMS “About Little CMS”).
It is a library based on the ideas by the ICC workflow and it provides classes and methods that
help to compute color transformations between different ICC profiles.

LittleCMS can open, interpret and create ICC profiles. It can compute color transformations
between two color spaces and it can apply these transformations to a given picture.

The littleCMS library comes in handy, because it provides a set of best-practice functions for
easy and fast standard color transformations. It spares us the time of programming basic color
transformations by hand.

Introducing the Code 39

Introducing the Code

Code inventory

As mentioned before, the fundamental classes and functionality have already been pro-
grammed for Keyframe. It is not time or place to present all classes in detail but I want to dis-
cuss one specific class, GlImage, because it is basically the heart of our CMM. This is because it
represents both an ordinary image and the lookup table that enables all transformations.

The lookup table class GlImage

The GlImage class, which was programed by Arne Magnus Bakke, has basically two func-
tions within the Keyframe code – two functions that might sound contradictory in the begin-
ning.

On the one hand side, the class can be used as wrapper class to display two-dimensional pic-
tures on the screen. In this role, it provides functions like draw(…) that specifies where and how
big the picture is supposed to be displayed on the screen or the thumbnail attribute, which is “a
smaller (thumbnail) size copy of the image in RGB format” (c. source code).

On the other hand side, GlImage can serve as three-dimensional lookup table that is used for
color transformations – together with some interpolation algorithms.

How is it possible that one and the same class can serve as both RGB image and lookup table?
Well, when you look at it, a LUT is nothing but a three dimensional picture by definition. The
coordinates of the LUT nodes represent the RGB values in the original picture and every single
of these nodes carries the values in the target color space as an RGB triple. In contrast, a two-di-
mensional image is like a two dimensional map where each pixel or node has its individual RGB
value attached. GlImage provides the possibility of multi-dimensional RGB images, that means
both two-dimensional and three-dimensional. Ergo it can be used for both two-dimensional
pictures on the screen and three-dimensional lookup table.

OpenGL

The GlImage class is based on another library called OpenGL (that is where it name comes
from).

OpenGL is known to be one of the “most widely used and supported 2-D and 3-D graphics
application programming interface (API)” (OpenGL “OpenGL overview”). It is a library, pro-
grammed in C, whose main purpose is to effectively handle image processing by providing basic
classes and functions that implement standard rendering and shading algorithms. OpenGL is
providing the functions that are directly computing and producing the image information that
is to be displayed on the screen. For our CMM GlImage class, OpenGL comes in handy because it
contains one-and-multi-dimensional texture classes that can be used for color transformations.
Textures are basically lookup tables that are applied on a given set of input data. As described
under part A, a CMM that follows the ICC workflow extracts information from the profile and
converts it into three independent one-dimensional lookup tables, each of them will be applied
on each color channel (c. Green&al., 257). In the GlImage class, it is the one-dimensional OpenGL
textures that act the part as these one-dimensional LUTs. They hand the transformation data to

Part B: Implementing a CMM Goals and Tasks

the shader, which finally applies it on the image that is to be color managed.

In the previous paragraphs, we got to know the company and parties involved in this project.
Furthermore, we got a short overview of the application and its functionality. Secondly, we had
a short introduction in the technology being used: We learned about the GUI library (FLTK) and
the color engine library (littleCMS). And finally, we had a short introduction in the existing code
especially the GlImage class GlImage.

Goals and Tasks

The main goal of my thesis was to program a color management module that can be used
as framework for all different kinds of color transformations within the Keyframe application.
More specifically, I wanted to enable color management that is based on the ICC workflow and I
wanted to enable the possibility to upload Nucoda lookup tables.

Therefore, I needed to program classes that use the littleCMS library and integrate them into
the existing source code. littleCMS provides some solid transformations from one color space to
another so that I did not have to program this by hand. I had to make sure, however, that I could
access these functions from Keyframe. Furthermore, I had to make a graphical user interface
(GUI) where the new feature was visualized. Also, the user was given the possibility to select
the new color management options with this new GUI.

In the next chapter, I want to present my color management screenflow and its GUI represen-
tation on screen.

The GUI Draft 41

The Graphical User Interface

Before we think of a graphical user interface (GUI) for our color management feature, we will
take a look on what already exists. On the start screen of the Keyframe application, we can cre-
ate new projects or load and open existing one. Once we have opened a project, we can choose
between different tasks: We can upload media files – both moving pictures and photographs –,
we can grade them, we can organize our metadata and we can select our overall project and ap-
plication settings. Apart from general settings like the projects name and its most important ac-
tors, we have a tab that is called lab. Here we see fields that contain information about the ratio
and the ICC profiles used for the pictures of the project. But these field do not have any function-
ality yet. This tab is where we later will integrate our color management workflow.

The GUI Draft

To begin with, we will now think of a draft for the color management workflow and the GUI
of the feature in Keyframe RushesControl.

By visualizing the problem, it is easier to communicate with others about the project.
As I described before, there have been various actors involved in managing this project, and
most of them were working in completely different places. Arne Magnus Bakke, Tariq Islam and
I were seated in Gjøvik, Andreas Herzog and John Christian Rosenlund in Oslo. The distance
between these two places required a big effort of preparation before meeting and discussing the
elements that were desired and need for the color management feature. Especially the graphical
elements of our workflow GUI are hard to describe verbally, in the same way as our final color
management feature can only be described insufficiently with words because it is a feature that
is supposed to be interactive. In other words by drafting a general GUI of the final feature so
early, I could more easily communicate to others at one glance what I was planing to do. Con-
sidering this, I came up with the GUI drafts that I made in Photoshop and that can been seen on
the next page.

Color management is a very abstract thing and it is somewhat difficult to make it comprehen-
sible to the user. As I pointed out in part A, people are often not aware of it, even if the majority
of them have already been confronted with it. That is why I decided to separate the necessary
options visually and as clearly as possible. What is more, I added help texts for every important
element explaining what they can be used for.

Let us take a look on the color management tab now, which I renamed to “Color Lab”. On the
top, we see a help text explaining what the tab can be used for color management and describ-
ing what color management is. Furthermore, we see a group of radio buttons that let us choose
one of the three color management workflow options. With John Christian Rosenlund and Arne
Magnus Bakke, we decided to provide these three – or better two and a half choices – for our
color management settings: no color management, color management based on profiles and color
management based on Nucoda LUTs.

Part B: Implementing a CMM The GUI Draft

Figure 3-13 Draft for “No Colormanagement” activated

Figure 3-14 Draft for “Profiles” activated

Figure 3-15 Draft for “LUT” activated

The GUI Draft 43

No Color Management workflow

Firstly, “No Color Management”2 is set as default. No additional characterization transforma-
tions are applied to the pictures in the preview windows. With this option, color management is
completely in the hands of the Mac OS as described in part A before.

People who work on a computer that does not allow calibration or does not support profiles
might use this option. Maybe, the user thinks that things have to be fast or they just do not care
about color management. When this choice is selected, no gamut transformations at all are ap-
plied to our picture. Thus, the rest of the color lab panel is left blank.

Camera Type and Working Space

The next two options do have two fields in common that do not change for either one. The
first option is that of the camera type being used, and the second is that of the selected color
working space being used.

On the one hand side, the camera choice is just a dummy field yet. We see a drop box on the
left side of the panel that allows us to select one of three camera types supported by Keyframe
RushesControl (Red Canon, 5D and Arri). Choosing a camera does not have any functionality
yet but additional features may be added later. A future feature could be for example the option
of calibrating and characterizing a film camera. Something that is not very common in the film
industry just yet. Also, one could thing of an option to upload camera profiles.

On the other hand side, the choice of working space is really important. The working space is
the color space that describes the encoding for color information of the picture or movie. It is the
source that the CMM transforms into the color space of the screens from. We decided to provide
the six most widely used color space standards in the film industry. These standards are used
literally all across the globe:

•	 Rec. 709 (ITU-R Recommendation BT.709)
Standard for high-definition (HD) television (c. BT.709-5 (04/02)).

•	 Rec. 601 (ITU-R Recommendation BT.601)
Standard for standard-definition (SD) television (c. ITU BT.601-6 (01/07)).

•	 sRGB
Standard RGB color space for monitors, printers and the Internet. Based on Rec.
709. (c. W3C “A Standard Default Color Space for the Internet - sRGB” and ICC
“IEC 61966-2-1:1999”).

•	 Adobe RGB
Standard developed by Adobe that should be able to display most colors achiev-
able by a printer with a device that uses RGB primary colors like a computer
screen.

2 The option that I consider as the “half option”.

Part B: Implementing a CMM The GUI Draft

•	 PAL (ITU-R BT.470-6)
One of the three most common standards used in broadcast television systems.
Main areas are Europe and almost any other continent except North America (c.
wikipedia/PAL).

•	 NTSC (ITU-R BT.470-7)
One of the three most common standards used in broadcast television systems.
Main areas are North America, Japan and parts of South America (c. wikipedia/
NTSC).

•	 SECAM
One of the three most common standards used in broadcast television systems.
Main areas are France, Africa and Northern Asia including Russia (c. wikipedia/
SECAM).

After I had defined the selectable color spaces, I downloaded the ICC profiles from the respec-
tive websites and stored them in a common folder within the application’s file system so that
they could be accessed by the CMM. Furthermore, I made a drop box In the middle of the color
lab tab where you can choose one of the described color spaces.
Now that we have defined the elements that are common for the profiles and LUTs workflow, we
will look at the elements that are very individual for each option.

Profiles Workflow

As second option, we want to enable a color management workflow that is based on the ICC
profiles of the screens. This will probably be the most common choice for all users.
This option is based on the ICC workflow as described under part A: After calibrating and
characterizing a monitor, the calibration software usually creates an ICC profile that is selected
under “System Preferences > Displays > Color” in Mac OS. These ICC profiles are the foundation
for our ICC based workflow option. More precisely, I added two read-only fields on the right
side of the panel that show the chosen ICC profiles for both main and extra screen. I assumed
that the preview of the grading panel will always be opened on the main screen whereas the
external window will be opened on the extra screen. The fields are read-only because the choice
of profiles should be handled centrally by the operating system under “System Preferences” as
mentioned above.

LUTs Workflow

As third and last option, we want to enable a color management workflow that allows the
user to upload self-generated lookup tables from the working space to each color space of the
two screens. This is useful for those film technicians who use stand-alone programs to com-
pute such LUTs. For the beginning, we decided to enable transformation only for Nucoda files
because Drylab has had several cooperations with this company in the past already. As for the
profile option, it is possible to choose the working space. However, the CMM gets all the infor-
mation that is needed for color transformations from the uploaded LUTs alone. We decided to
keep the color space field however so that the user can always keep in mind, which color space
he/she is using
To upload the files, we added two file input fields that open a file selector dialog to select the
desired LUT.

GUI functionality 45

To sum up, we discussed the various elements for the different workflow options on the “Color
Lab” tab. As we can see, we have three different areas on the lower part of the color tab. The first
on the left is related to the camera, the second in the middle to the color space and the third on
the right to the screens. To separate these areas more easily visually I created three icons that
represent each of the options named before.
We will now look at their respective functionality.

GUI functionality

How does the user use the color tab?
The user opens the “Color Lab” tag and can choose one of the three options; by default “No color
management” will be chosen.

1.	 “No color management”
The user will only see the introductory help text and the three radio buttons
with the color management choices.

2.	 “Profiles”
The user can now choose a camera, the working space of the picture or movie
and he/she sees the profiles of the main and extra screen being used. When
choosing a new color space the help text changes and displays some background
information about the chosen profile.

3.	 “LUTs”
The user can now choose a camera, the working space being used and he/she can
select and upload two Nucoda LUTs for the main and extra screen being used.

Now that we have the draft, we just need to program the elements and add the functionality.
We start typically by programing a dummy GUI for the application.

Figure 3-16 Camera icon Figure 3-17
Workingspace icon

Figure 3-18
Screen icon

Part B: Implementing a CMM Dummy GUI

Dummy GUI

In the beginning of programing, I implemented a dummy GUI in the actual Keyframe ap-
plication. That means, I added all elements, widgets, icons and labels on the “Color Lab” tab
as described above, but without any functionality enabled yet. That means at this point of the
development, there was no reaction at all when clicking on a drop box or selecting a different
radio button.

I did that, because of several reasons. Firstly, as I have not worked with the program before, I
figured this would be a great opportunity to get used to the source code and the various classes
being involved. Moreover, it helped me to get a general feeling about the libraries FLTK, littleC-
MS etc. Secondly, by visualizing the final GUI on screen, I could see if the draft turned out to be
as user-friendly and usable as I intended it to be.

When the dummy GUI was done, I began to add some actual functionality as described in the
next paragraph.

Colormanagement.cpp/Colormanagement.h 47

The Code

Colormanagement.cpp/Colormanagement.h

The heart of the Color Management Engine for Drylab’s Keyframe application is the C++ class
ColorManagement that is defined in the two files colormanagement.cpp and colormanagement.h.
The ColorManagement class contains the attributes and functions that are needed to enable color
management as described above.

Every project is associated to one single ColorManagement instance, that means that a
ColorManagement instance gets initialized every time that we load a project. This makes sense
because usually the color management settings are intended to be constant within a given proj-
ect but can change from one project to another. Imagine for example that Project One uses color
management based on LUTs whereas Project Two uses color management based on profiles and a
third project uses color management based on profiles as well but using a different color space.

After initializing the ColorManagement instance, the compiler calls the function
initializeColorManagementWorkflowAttribute (Project *project) to initialize the current
workflow settings that are stored for the project. Also it sets the right values for the workflow
radio button. The values of these buttons are stored for every project as boolean: One of the
three values has to be true whereas the other two have to be false. The workflow option that is
connected to the radio button holding the true value represents the currently selected workflow
option. This information is then stored in another project attribute called
ATTRIBUTE_PROJECT_COLORMANAGEMENTWORKFLOW in the forme of a string
depending on the selected workflow as determined before. I decided to create this forth attribute
because I wanted to store the information about the workflow in one variable rather than three
independent check boxes. Usually, I would have taken radio buttons that combine two or more
check boxes in a way that one can easily ask the value of theses boxes combined. Unfortunately,
there was no pre-programmed radio button class that I could use. And thus, I decided on the
procedure as described above

doColorManagement(Project *project)

After that, the function doColorManagement(Project *project) is called that serves as a transit
function to call one of the following functions depending on the workflow setting that is se-
lected:

1.	 doNoColorManagement(Project *project)

2.	 doProfilesColorManagement(Project *project)

3.	 doLUTsColorManagement(Project *project)

When either the profiles or the LUTs option is selected, the application will determine the
current screen profiles and working space setting by calling initializeScreenProfilesAttributes()
and initializeWorkingSpaceAttribute(project). doColorManagement(Project *project) is called
again, whenever entering or leaving the color tab, or whenever different choices are selected on
the “Color Lab” tab.

Part B: Implementing a CMM doColorManagement(Project *project)

Now, we will take a look on what these functions actually do in detail. We will begin with
some helping classes.

initializeColorManagementWorkflowAttribute(Project *project)

This function checks if a color management workflow has been selected, and if not this func-
tion sets it on default: no color management at all.

The information of the workflow setting is called in a project attribute called
ATTRIBUTE_PROJECT_COLORMANAGEMENTWORKFLOW in form of a string: “lutcm”.
“profilecm” or “nocm”.

When calling the function, the compiler firstly checks, if the attribute holds a value
and then it sets the radio button accordingly. That means, it sets the radio button that is
connected to the selected option to true and the other two to false. If no value is stored for the
COLORMANAGEMENTWORKFLOW attribute, it checks if a value has been saved for one of
the radio buttons. If yes, it sets the COLORMANAGEMENTWORKFLOW attribute and the radio
buttons accordingly.

If this does not work out either, the compiler sets the COLORMANAGEMENTWORKFLOW
and the radio buttons to a default no colormangement workflow.

Also, check the diagram on the next page (see Figure 3-19).

	 const char * currColorManagementWorkflow;

	 currColorManagementWorkflow = project-
>getAttributeValue(ATTRIBUTE_PROJECT_COLORMANAGEMENTWORK-
FLOW);

	 if (strcmp(“lutcm”, currColorManagementWorkflow) == 0) {

			 printf(“Your color management settings are current-
ly based on LUTs.\n”);

			

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIOLUTSCM,
true);

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIOPRO-
FILESCM, false);

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIONOCM,
false);

			 project->setAttribute(ATTRIBUTE_PROJECT_COLORMANAGE-
MENTWORKFLOW, “lutcm”);

			

		 } else if (strcmp(“profilecm”, currColorManagementWorkflow)
== 0) { …

doColorManagement(Project *project) 49

i
n
it
i
a
l
i
z
e
C
o
l
o
r
M
a
n
a
g
e
m
e
n
t
W
o
r
k
f
l
o
w
A
t
t
r
i
b
u
t
e

op
en

Pr

oj
ec

t

“l
ut

cm
”

se
le

ct
ed

?

se
t

R
A

D
IO

LU
T

SC
M

to

 t
ru

e;
 s

et

R
A

D
IO

PR
O

FI
LE

SC
M

 to
 fa

ls
e;

se

t R
A

D
IO

PR
O

N
O

C
M

to

 fa
ls

e

“p
ro

fi
le

cm
”

se
le

ct
ed

?

se
t

R
A

D
IO

LU
T

SC
M

to

 fa
ls

e;
 s

et

R
A

D
IO

PR
O

FI
LE

SC
M

 to
 t

ru
e;

se

t R
A

D
IO

PR
O

N
O

C
M

to

 fa
ls

e

se
t

R
A

D
IO

LU
T

SC
M

to

 fa
ls

e;
 s

et

R
A

D
IO

PR
O

FI
LE

SC
M

 to
 fa

ls
e;

se

t R
A

D
IO

PR
O

N
O

C
M

 to

tr
ue

tr
ue

fa
ls

e

tr
ue

fa
ls

e

d
o
C
o
l
o
r
M
a
n
a
g
e
m
e
n
t

Figure 3-19 Functionality initializeColorManagementWorkflowAttribute

Part B: Implementing a CMM doNoColorManagement(Project *project)

resetGlCanvas(GlCanvas *canvas)

GlCanvas is a Keyframe specific class that represents the canvas on which GlImages are
displayed. The GlCanvas holds two GlImage references: The first which is the actual image that
is displayed on the screen and a second, which is a lookup reference called “lut” that can be used
for color transformations on the actual image. This function resets the “lut”-variable of a GlCa-
nvas to a neutral LUT, which means that no color transformation is applied.

What is important about this function is how the GlCanvas lut is accessed. We get a pointer
on the actual LUT of the GlCanvas instance by calling canvas->getLut3D().

Now there are two possibilities:

1.	 The GlCanvas already has a lut. That means we have to deactivate it, reallocate it and
initialize it again.

2.	 The GlCanvas has no lut yet and thus, the lut reference will be NULL. That means we
have to create a new GlImage LUT and allocate it to the canvas.

These two possibilities will be important for all three functions. We should always call get-
Lut3D to check if a LUT already exists because of performance reasons.

doNoColorManagement(Project *project)

This function is called in the case that “No color management” selected and its purpose is
to reset the LUTs for both main screen and extra screen. In Keyframe RushesControl, there
are two preview windows: The first one is part of the grading window and this is the one that
is supposed to be always on the main screen. We can access it by calling gradingWindow-

	 lut->deActivate();

	 lut->allocate(32, 32, 3, 32);

	 lut->initializeLut();

	 lut->gain(1.0);

	 lut = new GlImage(32, 32, 3, COLORIMETRIC_RGB, 32);

	 lut->initializeLut();

	 lut->gain(1.0);

	 canvas->setLut3D(lut);

GlImage *lut = canvas->getLut3D();

doNoColorManagement(Project *project) 51

>getPrimaryCanvas(). The second one opens in an extra window when clicking on “External
window” in the grading window and it is supposed to be always opened on the extra screen3. We
can access it by calling gradingWindow->getTertiaryCanvas().

After we have accessed the GlCanvas for both main and extra screen, we reset both canvas’
luts by calling resetGlCanvas(mainScreenCanvas)/resetGlCanvas(extraScreenCanvas).

initializeScreenProfilesAttributes()

This function checks how many screens are currently connected to the system, also it stores
the location of the profiles of both screens for the whole application in the application attributes
MAINSCREENPROFILEURL and EXTRASCREENPROFILEURL. This is the first time that we
actually use the ColorSync architecture of Mac OS. ColorSync provides a variety of functions to
access the screens and to get information about their profiles.

At first the function tries to get a list with all active displays. At this point the number of
screens is limited to two. The function CGGetACtiveDisplayList is called, the IDs of the active
displays is stored in an array variable called displayID.

After we have successfully initialized the list, the function gets hold on the first element
in the display array, which is the ID of the main screen. With the help of ColorSync’s
CMGetProfileByAVID we can access the ICC profile of the main screen.

3  This definition implies that our CMM only succeeds with reasonable results as long as the
main application window is on the main screen and the external window ison the extra screen.

	 cgErr = CGGetActiveDisplayList(2, displayID, &numDisplays);

	 OSStatus cmErr = CMGetProfileByAVID(mainScreenID,
&mainProfileRef);

	 GlCanvas *mainScreenCanvas = application->window.
getGradingWindow()->getPrimaryCanvas();

	 GlCanvas *extraScreenCanvas = application->window.
getGradingWindow()->getTertiaryCanvas();

	

	 if (mainScreenCanvas){

		 this->resetGlCanvas(mainScreenCanvas);

	 }

	 if (extraScreenCanvas){

		 this->resetGlCanvas(extraScreenCanvas);

	 }

Part B: Implementing a CMM doNoColorManagement(Project *project)

Theoretically, we could now use the ICC profile for our CMM, practically there is another
problem. To access the actual screen profile, we need the ColorSync library to compute the
gamut transformations we want to use the littleCMS library. Both libraries, however, use differ-
ent data models to represent profiles and they can hardly be translated from one to each other.
This problem could be solved with the following trick: ICC profiles are existing files that are
stored somewhere on the file system. The profile classes of both libraries, ColorSync and littleC-
MS, are based on these very text files, which means both libraries provide functions to create a
profile instance based on the file’s path. The trick was to get hold on the path to the profile of the
ColorSync instance, and open this path later using the littleCMS framework.

I used the functions CMGetProfileDescriptions and NCMGetProfileLocation to access the
name and URL of the profiles and stored it in an application attribute: MAINSCREENPROFILE-
NAME and MAINSCREENPROFILEURL.

I decided to define this information for the whole application in opposite to for every proj-
ect because the screen profiles are supposed to stay the same whatever project is opened, and
because they can only be changed outside of the application anyway (c. above). After having
initialized the main screen attributes, it is now time to look for an extra screen.

The function checks the size of the displayID array. When it’s greater or equal two, we know
that there are more than one screen connected to the display. The function gets hold on the sec-
ond element in the display array, which is the ID of the extra screen.

Again: at this point, color management is only enabled for up to two screens. The
function accesses the extra screen profile as described for the main screen and stores the
profile’s information in two application attributes EXTRASCREENPROFILENAME and
EXTRASCREENPROFILEURL. What is more I decided to store another application attribute
called EXTRASCREENEXISTS that holds a boolean, depending on whether a second screen
actually exists or not. This last named attribute is needed for the GUI, because it enables
changing the help text for the extra screen element.

	 CMError	mErr = CMGetProfileDescriptions(mainProfileRef,
aName, &aCount, NULL, NULL, NULL, NULL);

		 application->configuration.setAttribute(ATTRIBUTE_
CONFIGURATION_MAINSCREENPROFILENAME, aName);

	 application->configuration.setAttribute(ATTRIBUTE_
CONFIGURATION_MAINSCREENPROFILEURL,
mainProfileLocation.u.pathLoc.path);

	 if (numDisplays>1) { …

		 CGDirectDisplayID extraScreenID = (CMDisplayIDType)
displayID[1];

doNoColorManagement(Project *project) 53

i
n
it
i
a
l
i
z
e
S
c
r
e
e
n
P
r
o
f
i
l
e
s
A
t
t
r
i
b
u
t
e
s

se
t

M
A

IN
SC

R
EE

N
PR

O
FI

LE
N

A
M

E;

se
t M

A
IN

SC
R

EE
N

PR
O

FI
LE

U
R

L
do

es
 e

xt
ra

sc

re
en

 e
xi

st
?

se
t

EX
T

R
A

SC
R

EE
N

PR
O

FI
LE

N
A

M
E;

se

t E
X

T
R

A
SC

R
EE

N
PR

O
FI

LE
U

R
L

i
n
it
i
a
l
i
z
e
W
o
r
k
i
n
g
S
p
a
c
e
A
t
t
r
i
b
u
t
e
s

tr
ue

fa
ls

e

se
t

W
O

R
K

IN
G

SP
A

C
EP

RO
FI

LE

Figure 3-20 Functionality
of initializeProfilesAttributes and
initializeWorkingspaceAttributes

Part B: Implementing a CMM doProfilesColorManagement(Project *project)

initializeWorkingSpaceAttribute(Project *project)

This function sets the working space for the project and stores the URL to the profile in a
project attribute. Two information related to the working space of a project are stored for each
project: WORKINGSPACEPROFILE and WORKINGSPACEPROFILEURL. Both attributes are de-
fined for each project individually because they change from one to another project but stay the
same within one specific project. The first attribute holds the name of the working space being
used and the second attribute holds the URL to the actual profile file on the file system. Again:
storing the URL to the profile makes it possible to open the profile with littleCMS.

Please check the diagram on the previous page for the previous two functions (see Figure
3-20).

doProfilesColorManagement(Project *project)

This function computes the color transformation and creates a GlImage lut for the main and
extra canvas depending on the profiles of the selected working space and the two screens.

To begin with, we access the main and extra screen canvas as described for
doNoColorManagement above.

Secondly, we get access to the profile of the current working space. We retrieve the value
stored in the WORKINGSPACEPROFILEURL attribute and, if it exists, open the profile by calling
the littleCMS function cmsOpenProfileFromFile.

Thirdly, if the profile can be opened, we move on to creating the GlImage LUT of the
main screen. We access the value stored in the MAINSCREENPROFILEURL and open it as
littleCMS profile instance. Then, we use both the working space and the main screen profile
to compute a gamut transformation with the help of littleCMS’ cmsCreateTransform function.
cmsCreateTransform requires multiple parameters:

•	 The input color space of the working space profile.

•	 The output color space of the main screen profile.

•	 The reproduction intent, I chose a relative colorimetric intent because the transforma-
tion is supposed to become as accurate as possible. Still, it should be computed rela-
tively to the medium’s white point.

	 ColorSpaceMetaData *tempMetaData = workingSpaceProfilePath
Dict[currWorkingSpace];

	 Path pathWorkingSpaceProfile = tempMetaData-
>getPathToICCProfile();

	 project->setAttribute(ATTRIBUTE_PROJECT_
WORKINGSPACEPROFILEURL, (const char*)
pathWorkingSpaceProfile.getBuffer());

doProfilesColorManagement(Project *project) 55

Note: The cmsCreateTransform function does not apply any transformations just yet but it cre-
ates a transform object that can later be used to apply the transformation on the actual image.

What is more, we need to convert the littleCMS transformation into a GlImage so that it
can be used for our preview screens. Therefore, we access the current lut of the main canvas
in the same way as described under doNoColorManagement and on the other hand we create
a temporary GlImage LUT with the same size as the current canvas lut. Then, we reset both
lookup tables. Why is that? As described before, lookup tables like our GlImage lut are three-
dimensional images that can have two functionalities. They can be used as source for color
transformations but they can also be used as targets for color transformations. Every node on
the lookup table lattice holds an RGB value. These values are neutral now because we reset them
before. In other words, a node with the coordination (50/50/50) holds an RGB value of (50/50/50)
as well. By applying a color transformation on this neutral LUT, we get a GlImage lookup
table that we can use later for color management. More precisely: By applying the littleCMS
transformation on a neutral GlImage LUT, we practically “clone” the transformations from the
littleCMS instance onto the GlImage instance. In other words, we convert the transformation
from one format (littleCMS) to another (GlImage). Remember: We need to do that because we
decided to use GlImages as color lut for our previews. There is just one question left: why do we
need both the lut connected to the canvas and a temporary lut? That has to do with the structure
of the littleCMS function cmsDoTransform that actually applies the color transformation. This
function requires the following parameters:

•	 The littleCms transformation instance.

•	 An input image, which is represented by the neutral temporary input lookup table.

•	 An output image, which is represented by our final lookup table that is associated to
the canvas. The result of the transformation is stored in this image.

After the transformation is applied, the lut connected to the main canvas contains the new
gamut mapping information. We close both profiles and the transformation because of perfor-
mance reasons. Now that we have the color LUT for the main screen, it is only the extra screen
that is missing.

And once more, the function checks if an extra screen is connected by retrieving the
EXTRASCREENPROFILEURL attribute. If the extra screen exists, the function creates a GlImage
LUT as described for the main screen.

Finally, whenever the function cannot open a profile, because no working space is registered
or the profile of a screen does not exist respectively the extra screen does not exist. The function

	 cmsHTRANSFORM tempLUT = cmsCreateTransform(
workingSpaceProfile, TYPE_RGB_8, mainScreenProfile,
TYPE_RGB_8, INTENT_RELATIVE_COLORIMETRIC, cmsFLAGS_
GAMUTCHECK);

	 cmsDoTransform(tempLUT, tempInput->getBufferU8(),
mainScreenLUT->getBufferU8(), 32*32*32);

Part B: Implementing a CMM doProfilesColorManagement(Project *project)

d
o
P
r
o
f
i
l
e
C
o
l
o
r
M
a
n
a
g
e
m
e
n
t

open
litt

leC
M

S-profi
le at

W
O

R
K

IN
G

SPA
C

EPRO
FILEU

R
L

open
litt

leC
M

S-profi
le at

M
A

IN
SC

R
EEN

PRO
FILEU

R
L

c
m
s
C
r
e
a
t
e
T
r
a
n
s
f
o
r
m

create
tem

pInput

get

m
ainScreenLU

T
c
m
s
D
o
T
r
a
n
s
f
o
r
m

does extra
screen exist?

open
litt

leC
M

S-profi
le at

EX
T

R
A

SC
R

EEN
PRO

FILEU
R

L
c
m
s
C
r
e
a
t
e
T
r
a
n
s
f
o
r
m

c
m
s
D
o
T
r
a
n
s
f
o
r
m

true

false

…
 as

above

done

Figure 3-21 Functionality of doProfilesColorManagement

doProfilesColorManagement(Project *project) 57

deactivates color management by calling resetGlImage(…) for the respective canvas.

Please, see the diagram on the previous page as well (see Figure 3-21).

vector<RGBPixel> getRGBValuesFromNucodaFile(const char *path)

This function retrieves the RGB values from a Nucoda file and returns them as a vector of
RGBPixels. The function is called with a string parameter that holds the path to a Nucoda file. A
typical Nucoda file can be seen here.

As you can see, the structure is always the same: In the beginning there are some comments,
signatures and metadata. At the end, there are lines that hold the RGB values of the nodes. Keep
in mind that every one of these lines represents one node on the lattice of the source lookup
table. What we have to do is to retrieve these values and save them in a vector so that they can
be converted into a GlImage later.

If the path to the file is not empty and the file can actually be opened, the function goes
through the following steps:

Firstly, it finds out whether the uploaded file is a NUCODA LUT or not. Therefore, it parses
the file for a signature that looks like this: “NUCODA_3D_CUBE 2”. This signature proofs that
the file is a valid Nucoda file. I actually sourced this functionality out to another function called
isNucodaFile(const char *path).

If the signature exists, the function finds out the depth of the NUCODA LUT. This, it parses
the function for the following line “LUT_3D_SIZE XXX” with XXX being an integer that
represents the depth of the file. The depth represents the steps that are used for the quantiza-
tion for each channel. A depth of 8 for example means that on each axis there are seven (eight
minus one) subdivisions from zero to the maximal RGB value resulting in 512 nodes (eight
times eight times eight). This functionality has already been outsourced to a function called

Lut3D.exe <1D-size> <3D-size> <invert-green> <1d-3d-test>

see Lut3D.cpp for details on optional arguments

NUCODA_3D_CUBE 2

TITLE “Identity Lut, 3D Only, Version 2 format”

LUT_3D_SIZE 8

0.000000 0.000000 0.000000

0.142857 0.000000 0.000000

0.285714 0.000000 0.000000

…

	 const char * tempString = “NUCODA_3D_CUBE 2”;

	 isNucodaFile = (int)line.find(tempString) != -1;

Part B: Implementing a CMM doProfilesColorManagement(Project *project)

c
o
n
v
e
r
t
N
u
c
o
d
a
I
n
t
o
G
l
I
m
a
g
e

g
e
t
R
G
B
Va
l
u
e
s
F
r
o
m
N
u
c
o
d
a
F
i
l
e

open
N

ucoda fi
le

does sig-
nature exist?

g
e
t
N
u
c
o
d
a
D
e
p
t
h

read
lines

m
ore

lines?

store
RG

B
 values in
vector

return
vector

w
rite

RG
BV

alues into
G

lIm
age

true

false
cancel

true

false

done

Figure 3-22 Functionaity of convertNucodaIntoGlImage and
getRGBValuesFromNucodaFile

doProfilesColorManagement(Project *project) 59

getNucodaDepth(const char *path).

Then, the function will parse each line, one-by-one compared to a regular expression string.
The regular expression holds three placeholders for floats divided by white space. That is exactly
the form of a line that holds the RGB data of the in the NUCODA file: three floats one for each
channel. When the line matches the regular expression, the function creates an RGBPixel for
this line and saves the float values in the RGBPixel’s respective r, g and b co-ordinates. After
that, the function adds the RGBPixel to the end of the vector using push_back(…).

Finally, the function returns the vector that stores the <size to the three> items.
The RGBPixel values in the vector can eventually be used to initialize our GlImage LUT.

Please, see the diagram on the previous page as well (see Figure 3-22).

convertNucodaIntoGlImage(const char *path, GlImage *lut, int depth)

This function converts an input Nucoda file as retrieved by path into an GlImage instance.
The GlImage information ist stored in the lut variable. Also, the function requires the depth of
the Nucoda file as input data.

A big part of the work has already been handled by the previous function called
getRGBValuesFromNucodaFile(…).

To begin with, the function calls getRGBValuesFromNucodaFile() and stores the returned
RGBPixel vector in a local variable.

Then, it compares the actual size of this vector to the assumed size, which is equal to depth to
the power of three (s. previous paragraph when I talked about the depth variable). If the vector
holds the right – that means the expected – amount of values, the function proceeds; otherwise
it returns.

After that, it loops through the values of the GlImage instance and copies the desired RGB
values from the RGBPixel vector into the GlImage file. The values in the Nucoda file are stored
in the following way: The rows from first row to the <number of depth>th row represent the
RGB values where red and green are set to zero but blue increases by one. The next <number of
depth> rows represent the RGB values where red is still set to zero but green is increased by one
and blue increases by one. For the next <number of depth> rows green is again increased by one

	 isRGBValue = (“%d\n”, sscanf(line.c_str(), “%f %f %f\n”,
&p.r, &p.g, &p.b)) == 3;

	 if (isRGBValue){ rgbValues.push_back(p); }	

	 if((int)rgbValues.size()==depth*depth*depth)

Part B: Implementing a CMM doLUTsColorManagement(Project *project)

and blue increases by one. This is repeated until green reaches a value of <number of depth>-1.
From this point on, the red value is increased by one, green is set back to zero and blue gain in-
creases by one. After <number of depth> rows, red is still set on 1, green is increased by one and
blue increases by one. This is continued, until all three values are set to <number of depth>-1 and
the loop terminates.

Inside the loop, the RGB values from the current RGBPixel are stored inside the current
GlImage co-ordinate. And when the loop moves on the current RGBPixel is dropped for the next
RGBPixel in the vector.

Finally, the function returns a boolean that is either true or false. True if everything goes al-
right. Thus, the lut variable holds the information previously only stored inside the Nucoda file.
False if there was a problem with the conversion of the values. In this case, the lut can be reset
afterwards.

doLUTsColorManagement(Project *project)

This function converts a chosen Nucoda file into a GlImage that is eventually used for color
management.

To begin with, the function gets access to the main canvas and the Nucoda file that is select-
ed for color management.

Secondly, it checks, whether the selected file is a Nucoda file or not by parsing through the
file for the Nucoda signature as described for the convertNucodaIntoGlImage(…) function.

If yes, it will then retrieve the depth size of the Nucoda lookup table, because this data has to
be handed down to the convertNucodaIntoGlImage(…) function in order to check, if the file has
enough values.

	 int x=0;

	 for(int b=0;b<depth; b++){

		 for (int g=0;g<depth;g++){

		 for (int r=0;r<depth;r++) {

		 lut->setSample(lut->getSampleIndex(r, g, 1, b),
rgbValues[x].g);

		 lut->setSample(lut->getSampleIndex(r, g, 1, b),
rgbValues[x].g);

		 lut->setSample(lut->getSampleIndex(r, g, 2, b),
rgbValues[x].b);

		 x++; } } }

	 extraSuccess = convertNucodaIntoGlImage(
extraLUTNucodaPath, extraScreenLut, extraDepth);

doLUTsColorManagement(Project *project) 61

Furthermore, the program gets hold of the lut that is registered for the main canvas and con-
verts the information in the Nucoda file into the main canvas’ lut via convertNucodaIntoGlIm-
age(…).

If anything of the above throws any errors, the lut for the main screen will be reset via
resetGlCanvas(…).

What is more, the previous steps are repeated for the extra screen canvas.

This feature threw a lot of errors at the beginning. The main problem was that the tertiary
canvas was not initialized before clicking on the “External window” button. However, the func-
tion used to apply color management for this canvas whenever doColorManagement(…) was
called – regardless whether the canvas existed or not. Thus, the program crashed when the can-
vas was not actually initialized. To avoid this problem I added a simple if-clause to check if the
external screen was opened at all, and if the tertiary canvas existed.

Screen Flow Video

This was an overview of the most important classes involved. Of course there were many
more, especially those concerning the GUI that I will not discuss here. To sum things up, you
can now take a look on the screenflow of the final feature that I programed for the last weeks:

http://tinyurl.com/6hkn4w6

To choose the new color management settings, go to “Configuration>Color Lab”. There, you
will find three radio button options: “No Color Management”, “Profiles” and “LUTs”.
You select “No Color Management”, nothing is going to happen.

You select “Profiles”, will you see more options. You will for example have to choose the color
working space you are currently working with. What’s more, the application gets the profiles
automatically. If you want to choose other profiles, you have to go to “System Preferences > Dis-
plays > Color”.

You select “LUTs”, you will get more options as well. Now, you have to upload Nucoda luts.

Finally, if you only have got one screen. The color tab is only showing one screen. In the fol-
lowing video, I disconnected the extra screen while the program was still open:

http://tinyurl.com/44gjfmq

http://tinyurl.com/44gjfmq

Part B: Implementing a CMM doLUTsColorManagement(Project *project)

Discussion

During the first week, I experimented with the different libraries and got used to the source
code and its structure. I drew the icons that were needed and programed the GUI so that every
element could be seen on the screen. In the beginning, it was a bit tricky to get used to the GUI
framework but in the end I managed the functions pretty well. In the beginning, I found it very
tough that many elements I knew from other programming languages did not exist or did not
work properly with the fltk framework. For example, there was no user-friendly radio button
class. Furthermore, I did not like the way attributes were stored for the project respectively the
whole application. Being most experienced with web applications, I was used to store complex
objects by their primary key in a database. For this project, I could only store the basic types
like strings, booleans and integers. Thus, the complicated solution for the radio menu with three
plus one attributes being stored for a project. It would have been nicer to store one actual profile
instance rather than just the URL to the file for example.

From the second week on, I began to work with the doXXXColorManagement(…) functions
and continued adding functionality to the dummy GUI. This working continued throughout the
third week as well. The hardest task during this step was to communicate between the Col-
orSync library and the littleCMS library. Both libraries use basically the same files but they ac-
cess them by different library-specific class representations. This fact made it necessary to think
about how to convert from one framework to the other. Eventually, I came up with the solutions
as described above.

During the fourth and last week, I finally focused on GUI details and minor bugs within the
code. In this phase, it was all about timing. The functions were working but the compiler was
throwing errors. This was due to the fact, that the functions called instances that have not been
initialized yet. At this point, I had to include several if-clauses checking if extra screen exists for
example and initialize variables that have not been initialized before. Moreover, I had to adjust
the incidents when the doColorManagement(…) function was actually called. At first, for exam-
ple, the lut did not change when a new working space was selected. Thus, I had to add a call for
doColorManagement(…) in the callback function for the drop box widget.

Finally, there might be some possibilities to clean up the code. Especially, the help texts for
example should not be stored in the ColorManagement class but centrally for the whole applica-
tion.

To sum up, we have now looked on the technical details of the color management module and
the most important classes and functions in the source code. We will now proceed in testing if
and how accurate the module works in our last part C about evaluation.

﻿ 63

In the previous part, we looked at the technical implementation of our color management
module (CMM) for Drylab’s Keyframe application. Now, there are two interesting questions left:

Can we visualize the improvement that was enabled by our CMM? And if yes, how can we do
that?

In part A, we stated that the main purpose of color management is to solve the color re-
production problem. The color reproduction problem is the problem that any given input data
is displayed differently on different devices. An optimal color management neutralizes these
differences completely; an average color management reduces these differences. Luckily for us,
these differences can be measured using colorimetry and the color difference formula described
in part A. And here is what we are going to do: We will measure the CIELAB output values of
some color samples that are displayed in Keyframe and that are shown on two screens that are
connected to the system – both with and without color management feature activated. Then, we
will calculate the color difference between those batches.

Experiment design and evaluation

For the experiment, I used a Mac with MAC OS X 10.6.4.

I had three screens: Two DELL LCD screens and one Phillips CRT. I kept one of the LCD
screens fixed as main screen, and swapped between the remaining CRT and LCD screens for the
various series of experimentation to investigate the different behavior of CRT and LCD screens.

Furthermore, I used an Gretag-MacBeth eye-one display 2 colorimeter for the calibration and
measuring jobs. The profiles were created with the help of the eye-one match software and the
measurements were taken with the MeasureTool.

Throughout the evaluation process, I used various different color patches to compare the
output on main and extra screen. In total, I was testing on seven days (E1-E7) and I made subtle
changes for each experiment. The basic procedure, however, was the same for all experiments. I
want to explain this basic procedure using the setup of the final, seventh experiment on April,
13th 2011 (E7). In the discussion afterwards, I will point out some of the variations I made during
the other experiments, and I will analyze possible sources of error.

part C

Evaluation of the
Color Management Module

Part C: Evaluation of the CMM? ﻿

Figure 4-23 #1: sRGB (123/162/150)

Figure 4-24 #2: sRGB (240/130/0)

Figure 4-25 #4: sRGB (255/26/165)

Figure 4-26 #3: sRGB (0/154/74)

Figure 4-27 #5: sRGB (168/187/198)

Figure 4-28 #6: sRGB (244/232/0)

Figure 4-29 #8: sRGB (0/0/0)

Figure 4-30 #7: sRGB (255/255/255)

Design of the color patches 67

1.	 Design of the color patches

I made eight random color patches in Adobe Photoshop (see Figure 4-23 – Figure
4-29 on the next page). The working color space of Photoshop was set to sRGB and
every color patch was assigned with the sRGB profile. I used random color patches
because I wanted to test if the CMM would give reasonable results for any color within
the color space. For my first experiments, I used 32 color patches whereof three times
ten were gradients from black to each of the primaries red, green and blue plus black
and white. That was because the primaries are the most important colors responsible
for the creation of any other color, and black and white because I wanted to see the
performance when the screen reaches its min respectively max performance. I dropped
these gradient patches, however, because these patches are most likely to be used by
the profiling software for the creation of the profiles. This means that they would most
likely result in good results because they are directly translated from source to target
color space using the profile’s LUT. In contrast to that, I wanted to check if the CMM’s
transformation works as good for values that had to be interpolated. That is way I
switched to the randomly chosen color patches.

What is more, I chose color patches that lie within the color space i.e. I tried not to
use any patches that have one of the three RGB channels to the max. The screens do
have different primaries coordinates. As described under part A, a screen is only ca-
pable of reproducing colors that lie within the triangle formed by the primaries in the
CIEXYZ chromaticity diagram. Colors that have a maximum value of either one of the
channels’ primaries often lie directly on the surface of the screens’ gamuts. Then, if the
primaries are just slightly different, it is the surface of the screens’ gamuts that differ
the most when one screen’s gamut is compared to another screen’s gamut. Thus, a color
that lies on the surface of the gamut is most likely to not be mapped correctly from one
color space to another. In other words, the color difference of a color that lies on the
surface of a gamut is naturally expected to be above average. Thus, I decided later not
to use surface colors because such colors give by design a big color difference.

Secondly, I used only eight color patches later because the measuring of the patches
was rather time-consuming: I had to open every color patch manually in Keyframe,
measure the colorimetric value by hand with MeasureTool and write the results manu-
ally in a Google spreadsheet. All of this had to be done twice for each screen, before
and after color management. For the 32 color patches in the beginning, an experiment
took about 90 minutes. By contrast to that, I was unsure about my experimental design
and most of all about the results I got for the first measurements. That is way I wanted
to do more series of measurements within the time being given, which was impossible
when one measurement series took 90 minutes. Thus, I concentrated on the few but
more accurate experimental design with eight patches1.

Finally, I included the white color patch because I needed the XYZ values of this
reference later to convert XYZ values into LAB values.

1 As it turned out later, I had problems with the XYZ/LAB values I got from the Measure Tool in the
beginning. This will investigated later under discussion.

Part C: Evaluation of the CMM? Monitor calibration

2.	 Monitor calibration

I calibrated each screen independently with the help of the Eye-one Match software.
As white point, I chose D65, which correlates to a color temperature of 6500K. The
gamma was set to 2.2, which is the default for Mac OS. Finally, I set the luminance as
following:

•	 When comparing the LCD to the CRT screen, I set the luminance level to 80
candela/m2. Most CRT screen are not capable of producing an equally high
luminance level as LCD screens. Thus, to be completely certain, I set the lumi-
nance level to 80 because I wanted to be sure that both screens could repro-
duce the same luminance level.

•	 When comparing the both LCD screens, I set the luminance level to 120. On
the one hand for it was recommended by the software. On the other hand be-
cause I was sure both were capable of reproducing the same luminance level.
After all they were of the same type and brand.	

3.	 Profiling

At the same time of the calibration, the Eye-one Match software creates a profile.
This profile is handed to the operative system which sets the profile as currently
chosen profile. Of course, the profile can be changed manually by choosing a different
profile under “System Preferences > Displays > Color”. It is important to mention that
the profiles can be chosen and changed for both screens independently. When choosing
the “Settings” menu a box opens on each screen and a profile can be chosen for either
one. Mac OS X uses either profile independently for the calibration of each screen. In
other words, to compute the calibration function for the main screen for instance, it
extracts the information stored in the “vcgt”-tag of the profile chosen in the dialog of
the main screen. Respectively to compute the calibration function for the extra screen
Mac OS X extract the information stored in the “vcgt”-tag of the profile chosen in the
dialog of the extra screen.

After this, I wanted to take a look at the profiles that I just had created. ColorSync
Utility is a software that allows access to the data of an ICC profile. As we can see in
the pictures, we can look at the data stored in the different tags as for example the
white point of the profile (wtpt-tag), the XYZ coordinates of the primaries (rXYZ-
, gXYZ, bXYZ-tag in the pictures on the next page: Figure 4-35, Figure 4-36), the
calibration curve (vcgt-tag), the tone reproduction curves of each channel (rTRC-,
gTRC-, bTRC-tag) etc.

The ColorSync Utility provides furthermore a possibility to present a 3-D
presentation of the screen’s gamut as stored in the profile. With this feature, we have
the opportunity to compare two gamuts with each other. In the pictures on the next
page (see Figure 4-31, Figure 4-32), we can see the gamut of the main LCD screen as a
white net cube and the gamut of the extra LCD screen as inner cube that is solid and
colored. As we can see here, the two gamuts are very similar due two the sameness of
type and brand.

Monitor calibration 69

Figure 4-35 Primary coordinates of the main
LCD screen

Figure 4-36 Primary coordinates of the extra
CRT screen

Figure 4-31 Gamut of the main LCD screen
compared to the extra LCD screen gamut (1)

Figure 4-32 Gamut of the main LCD screen
compared to the extra LCD screen gamut (2)

Figure 4-33 Gamut of the main LCD screen
compared to the extra CRT screen gamut (1)

Figure 4-34 Gamut of the main LCD screen
compared to the extra CRT screen gamut (2)

Part C: Evaluation of the CMM? Measuring

In contrast, the gamut of the LCD screen as solid and colorful cube compared to
the gamut of the CRT as white net cube in the pictures below (see Figure 4-33, Figure
4-34). We can see that for example the CRT’s gamut is a bit bigger than the LCD’s gamut
(except for colors in the red areas).

4.	 Measuring

I measured the tristimulus values of the color patches on both screens before and
after color management in Keyframe.
At first, I created a new Keyframe project called “Evaluation”, in which I imported the 8
sample targets.
Then, I chose “No Color Management” under settings in Keyframe. Moreover, I opened
the MeasureTool software, chose “Spot Measuring” in the menu on the left and set the
values to XYZ.
Furthermore, I put the colorimeter in the middle of the main screen. One by one, I
opened each picture of my color patches in the grading window so that I could see the
color patch in the preview window of the grading window on the main screen. I mea-
sured the XYZ value of the displayed color patch and copied these values into a Google
spreadsheet. Note: I always kept the colorimeter on the same spot of the screen. Actu-
ally I never moved it until I moved on to measuring the patches on the extra screen.
After that I was finished with the measurement of all 8 color patches, I chose the “Pro-
files” option under settings in Keyframe.
Eventually, I repeated the whole procedure for all 8 color patches again – but this time
the color management feature was turned on.

Secondly, I placed the colorimeter in the middle of the extra screen. I put the color
management settings back to “No Color Management”.
One by one I opened each picture of my color patches in the grading window and I
clicked on “External window” to open the picture in an extra window.
Then, tracked this window to the spot where I placed the colorimeter on the extra
screen. I measured the XYZ value with the MeasureTool software and copied the values
into my Google spreadsheet.
 The same procedure was repeated for all 8 color patches again with the color manage-
ment settings set to “Profiles”.

To sum up, we have now the XYZ values of eight color patches for both screens,
before and after color management which resulted in four times eight, 32 XYZ triples.

Evaluation 71

5.	 Evaluation

I calculated the ΔE for both screens before and after color management, compared
the screen both with each other and with the original input data.
To calculate the ΔE, it is necessary to convert the XYZ data into LAB first. For this pur-
pose, I used the conversion function with the help of a Excel document (c. Lindbloom’s
v: XYZ to Lab) that can be seen below:

As we can see in the function. It is necessary to declare a reference white with the
XYZ coordinates X

r
, Y

r
 and Z

r
 to normalize the values. For this reference white, I used

the XYZ values of the white color patch that I measured for every data set2. Moreover, I
had to convert the original input RGB values into LAB values. This time, I relied on the
values that Adobe Photoshop provided me.

2 This reference white was a source of big confusion in the beginning as I will point out later in the
discussion.

, where

Figure 4-37 Formula to convert from CIEXYZ to CIELAB	

, with

Part C: Evaluation of the CMM? Evaluation

With the LAB values at hand we can easily calculate the ΔE with the formula as
described under part A. Now, it was time to compare the LAB values. I compared the
values in two ways:

•	 At first, I compared the values of each screen independently with the original
input LAB values.

E7
Target

L
Target

a
Target

b
before

Main
L

Main
a

Main
b

ΔE main screen aer
Main

L
Main

a
Main

b
ΔE main screen

#1
#2
#3
#4
#5
#6
#7
#8

63 -16 2
66 39 73
57 84 -14
56 -50 32
75 -5 -8
91 -10 88

100 0 0
0 0 0

63,8 -19,4 4,72
66,3 37,5 70
57,8 85 -9,87
54,5 -54,7 32,2
75,3 -7,68 -4
90 -12,2 88,1

100 0 0
1,1 0,18 -1,43

4,388724188
3,363970868
4,32919161
4,896917398
4,824147593
2,429176815

0
1,813091283

62,8 -16,2 1,98
65,3 36,7 69,1
56,9 85,8 -10,4
54,5 -53,4 30,1
74,6 -5,55 -5,31
90,9 -15,1 87,9
100 0 0
1,11 0,18 -0,6

0,333616546
4,572067366
4,008840231
4,189582318
2,780683369
5,10331265

0
1,274558747

Figure 4-38 Target and sample Lab values measured on the main LCD screen before and after color management in Key-
frame

Figure 4-39 Comparison of ΔE between target and sample Lab values
measured on the main LCD screen before and after color management in
Keyframe

0

1

2

3

4

5

6

#1 #2 #3 #4 #5 #6 #7 #8

ΔE main screen vs. input data

ΔE before

ΔE aer

Evaluation 73

Figure 4-40 Comparison of ΔE between target and sample Lab values
measured on the extra CRT screen before and after color management in
Keyframe

0

2

4

6

8

10

12

#1 #2 #3 #4 #5 #6 #7 #8

ΔE extra screen vs. input data

ΔE before

ΔE aer

E7
Target

L
Target

a
Target

b
before

Extra
L

Extra
a

Extra
b

ΔE extra screen aer
Extra

L
Extra

a
Extra

b
ΔE extra screen

#1
#2
#3
#4
#5
#6
#7
#8

63 -16 2
66 39 73
57 84 -14
56 -50 32
75 -5 -8
91 -10 88

100 0 0
0 0 0

61,4 -15,9 6,36
63,4 48 66,6
57,7 83,3 -9,42
53,8 -50,4 37,9
72,6 -0,85 -6,12
88,8 -6,2 87,6
100 0 0
3,15 1,23 0,25

4,651924333
11,33328725
4,679893161
6,332803487
5,140165367
4,394189345

0
3,390855349

63,2 -19,7 7,33
62,7 40,5 63,7
57,2 78 -10,7
55,6 -50,7 37,7
73,8 -4,8 -5,95
89,5 -12,2 83,7
100 0 0
3,29 0,69 0,24

6,513478333
9,9603263

6,886174555
5,748556341
2,393929824
5,080442894

0
3,370133529

Figure 4-41 Target and sample Lab values measured on the extra CRT screen before and after color management in Key-
frame

Part C: Evaluation of the CMM? Evaluation

•	 Secondly, I calculated the difference between the values on each screen di-
rectly regardless of the actual original data.

E7
Target

L
Target

a
Target

b
before

Main
L

Main
a

Main
b

Extra
L

Extra
a

Extra
b

ΔE before main
vs. Extra

#1
#2
#3
#4
#5
#6
#7
#8

63 -16 2
66 39 73
57 84 -14
56 -50 32
75 -5 -8
91 -10 88

100 0 0
0 0 0

63,8 -19,4 4,72 61,4 -15,9 6,36
66,3 37,5 70 63,4 48 66,6
57,8 85 -9,87 57,7 83,3 -9,42
54,5 -54,7 32,2 53,8 -50,4 37,9
75,3 -7,68 -4 72,6 -0,85 -6,12
90 -12,2 88,1 88,8 -6,2 87,6

100 0 0 100 0 0
1,1 0,18 -1,43 3,15 1,23 0,25

4,506761587
11,41140219
1,781937148
7,185193108
7,637126423
6,1689059

0
2,85085952

Figure 4-42 Lab values on main LCD and extra CRT screen before management in Keyframe

E7
Target

L
Target

a
Target

b
aer

Main
L

Main
a

Main
b

Extra
L

Extra
a

Extra
b

ΔE aer main
vs. Extra

#1
#2
#3
#4
#5
#6
#7
#8

63 -16 2
66 39 73
57 84 -14
56 -50 32
75 -5 -8
91 -10 88

100 0 0
0 0 0

62,8 -16,2 1,98 63,2 -19,7 7,33
65,3 36,7 69,1 62,7 40,5 63,7
56,9 85,8 -10,4 57,2 78 -10,7
54,5 -53,4 30,1 55,6 -50,7 37,7
74,6 -5,55 -5,31 73,8 -4,8 -5,95
90,9 -15,1 87,9 89,5 -12,2 83,7
100 0 0 100 0 0
1,11 0,18 -0,6 3,29 0,69 0,24

6,417889061
7,12659105
7,840446416
8,161452077
1,257179383
5,263088447

0
2,391254901

Figure 4-43 Lab values on main LCD and extra CRT screen after management in Keyframe

Figure 4-44 Comparison of ΔE between main LCD and extra CRT screen
before and after color management in Keyframe

0

2

4

6

8

10

12

#1 #2 #3 #4 #5 #6 #7 #8

ΔE main screen vs. extra screen

ΔE before

ΔE aer

Interpretation of the experimental design 75

Discussion

Interpretation of the experimental design

As we can see, the direct comparison with and without color management shows very differ-
ent results. For some patches, the color reproduction problem seems to have decreased (Patch #4
and #5) whereas for other it seems to have increased (Patch #1 and #6). Thus, I made a simple t-
test analysis for my results as described by the pharmaceutical institute of the University of Oslo
(c. Farmasøytisk institutt, universitetet i Oslo). My null hypothesis was as following:

H0 = There is no difference for our average ΔE before and after color management that results
from the experiment designed as described above.

For the calculations, I used GraphPad’s t-test online calculator. I set up a paired test and
typed in the ΔE between the main screen data and original data before and after color manage-
ment. Then, I repeated this procedure for the ΔE between the extra screen data and input data,
and finally for the ΔE between the main screen and the extra screen data, both before and after
color management. The website gave the following p-values for the investigated tests:

As we can see, the p-values are very much higher than the statistical significance level of
0.05. This means that our results are not statistically significant. In other words, the differences
between the results occurred more likely due to chance than due to our color management en-
gine (c. Farmasøytisk institutt, universitetet i Oslo).

Does this mean that our CMM does not work at all? No, not necessarily. I just means that
with the recent experiment design, we cannot make a profound decision on whether the CMM
works or not. The results of the t-test point out that the results before and after color manage-
ment are basically the same. In other words, the test showed that our experiment did not prove
that our results were better after color management than before. Simultaneously however, the
test showed that the experiment did not prove that our results were much worse after color
management neither. If the CMM would work faultily – if the CMM would apply double color
transformation, one by the Keyframe CMM and one by the Mac OS X CMM, for example –, the
results would be much worse after color management than before. At least, we can deduce that
our CMM is not completely wrong.

The question, whether our CMM is an improvement or not, cannot be answered with our
current experiment design. The setup was two rough to measure the subtle changes in ΔE before
and after color management. In the following discussion, I point out various factors that are
responsible for the uncertain experiment results.

At first, there is the uncertainty of the measuring instrument. I tested the repeatability of the
instrument on the CRT screen during experiment 6 (E6) and on the LCD screen during experi-
ment 5 (E5).

Figure 4-45 P values for the test as described above

ΔE main screen
vs. input data

ΔE extra screen
vs. input data

ΔE main screen
vs. extra screen

P value 0,5268 0,9933 0,7811

Part C: Evaluation of the CMM? Interpretation of the experimental design

For the measurement on the CRT screen, I measured the dark green patch (#4) ten times in
a row. Then, I computed the CIELAB values by taking the white patch (#8) as white reference.
Finally, I calculated the ΔE between these measurements and the (fixed) input LAB values as can
be seen below:

The measurements vary heavily. For the CRT monitor in E7, for example, we get a variation
of almost 0.8 ΔE between the lowest value (ΔE = 5.44) and the highest value (ΔE = 6.24)3. Now
remember that for some before/after comparison of our color patches, the difference was below
1.0 ΔE. Thus the repeatability of our measurement with the colorimeter on our screens is too
imprecise to make a well-grounded conclusion.

On the one hand, this could be improved by using a more stable measuring instrument. For
example, one could use a spectroradiometer instead of the colorimeter. On the other hand, one
could use two screens that are more stable than the ones I used for my experiments. The repeat-

3 For a random measurement of repeatability of the yellow patch (#6) – not documented – I got even
bigger variations of the ΔE.

E7
Target

L
Target

a
Target

b
before

Extra
L

Extra
a

Extra
b

ΔE extra screen

#4-1
#4-2
#4-3
#4-4
#4-5
#4-6
#4-7
#4-8
#4-9
#4-10

56 -50 32
56 -50 32
56 -50 32
56 -50 32
56 -50 32
56 -50 32
56 -50 32
56 -50 32
56 -50 32
56 -50 32

53,3 -47,4 36,6
53,3 -49,1 36,6
53,4 -48,7 36,8
53,4 -48,7 37,3
53,4 -47,9 36,8
53,7 -49,8 37,3
53,5 -48,4 37,1
53,4 -48,7 36,8
53,4 -47,9 37,3
53,4 -48,7 37,3

5,975985274
5,444749765
5,632166546
6,005713946
5,877388876
5,768960045
5,834123756
5,632166546
6,236264908
6,005713946

Figure 4-46 Repeatability of the extra CRT screen

Figure 4-47 ΔE comparison for #4 patch on the extra CRT screen

5

5,2

5,4

5,6

5,8

6

6,2

6,4

#4
-1

#4
-2

#4
-3

#4
-4

#4
-5

#4
-6

#4
-7 #4

-8
#4

-9

#4
-10

Repeatability of our Experiment

ΔE extra screen vs.
input data

Interpretation of the experimental design 77

ability is too inacurate for our purpose.

Secondly, the non-uniformity of either one of the screens is a vast source of errors. For the
previous measurements, the color patches were measured at one and the same patch. The results
of the measurements depend strongly on which geometrically coordinate of the surface of the
screen one places the colorimeter on. When looking at the white patch on the LCD screen, for
instance, one can see a subtle gradient from a light bluish white on top to a more neutral white
at the bottom. During the sixth experiment (E6) I tested the uniformity of the LCD screen by
measuring six color patches with the colorimeter placed on the top border of the screen, and
then I placed the colorimeter again on the bottom border of the screen:

Please keep in mind that we are looking at measurements on one and the same screen: The
differences are quite significant. Some of them are even bigger than some of the measurements
we made for two different screens. I tried to reduce this error as I put the colorimeter in the
center of the screen both for the characterization and for the measuring. However, even now the
differences can vary a lot when the colorimeter is just moved by some centimeters.

E6
Target

L
Target

a
Target

b
before

above
Main

L

above
Main

a

above
Main

b

below
Main

L

below
Main

a

below
Main

b

ΔE above vs.
below main

screen
#1
#2
#3
#4
#5
#6

63 -16 2
66 39 73
57 84 -14
56 -50 32
75 -5 -8
91 -10 88

58,93 -18,09 3,38 61,42 -16,26 3,72 3,108793978
60,97 35,15 64,65 63,62 36,8 67,17 4,011907277
53,45 78,34 -10,02 55,63 82,49 -10,77 4,74735716
49,27 -51,4 30,38 52,05 -52,4 31,4 3,125507959
69,57 -6,51 -5,86 72,67 -4,84 -5,26 3,571960246
83,86 -13,91 81,92 87,05 -11,49 85,23 5,195055341

Figure 4-48 Lab values measured on the main LCD screen at the top and on the bottom border of the
screen

0	

1	

2	

3	

4	

5	

6	

#1	
 #2	
 #3	
 #4	
 #5	
 #6	

ΔE	
 above	
 vs.	
 below	
 on	
 main	
 screen	

ΔE	
 below	
 vs.	
 above	
 on	

screen	

Figure 4-49 ΔE between top and bottom border of the main LCD screen

Part C: Evaluation of the CMM? Interpretation of the experimental design

In other words, the results vary depending on the geometrical position on the screen’s
surface. The calibration and characterization that was done for one specific spot on the screen,
might be slightly different for any other spot on the screen. During my experimentation, I
changed the spot between calibration/characterization and measuring. Thus, the color transfor-
mation that are accurate for the spot of the calibration/characterization might be unfitting for
the measuring spot. In other words, by moving the colorimeter between calibration/characteri-
zation, we have another source of errors.

We could reduce this error related to non-uniformity of the screens as we immediately meas-
ure the color patches right after the calibration/characterization without moving the measuring
instrument at all. This is somewhat unpractical as I made several measurements on one day and
thus moved the colorimeter. In that case, we would have calibrate before every measurement,
which would be even more time consuming. Furthermore, we could try to get some screens that
are more uniform than the ones used for our experimentation. This is very hard, and neverthe-
less the improvement would probably not be very high because screens tend to be very non-
uniform to a certain degree.

Thirdly, there is the uncertainty of CIELAB conversion that is used for the colorimeter. Dur-
ing my first observations (E1, E2, E3), I got LAB values that had an L value which was over 100.
Of course, this can be true but it is quiet unpractical for our purposes. LAB values are computed
from the XYZ values relatively to the white point. In our formula, this white point is represented
by its XYZ values Xn, Yn and Zn that are obtained by measuring a white patch. The reason for
is that of gaining CIELAB values that are normalized so that white results in a CIELAB triple of
(100/0/0). The fact that we get L values higher than 100 suggests that MeasuringTool computes the
LAB values relatively to a white point whose luminance lies under the screens’ actual maximum
capacity. Considering furthermore the fact that MeasureTool never asked for a measurement of
a reference white patch or any other calibration before the actual measurement, I assume that
MeasureTool uses a standard default white point for its calculation like for example D50 or D65.

Nevertheless, assuming that the software used the same white point for all calculations
and thus representing a somewhat “absolute” measurement, we could still use the LAB values
to compare the difference of a stimulus on one screen to that on the other because. We cannot,
however, use these values to compare a measured stimulus to its original input data: As we saw
in the previous chapter, our color transformations are based on the relative transformation in-
tent. That means that all transformations occur relative to a device’s white point. Thus, in order
to compare the performance of the CMM, we have to compare the CIELAB values that are rela-
tive to the device’s/profile’s white point. Unfortunately, the MeasureTool software never asked
for our specific white point and thus did not calibrate the transformation.

What is more, I measured the XYZ values of the color patches because I wanted to calculate
the LAB values myself during my later experimentations (E4, E5). However, I forgot to include a
white patch as reference in the beginning so that I did not have a reference white to compute the
values. I figured I could maybe use the XYZ values that are stored in the luminance (“lumi”) tag
of the profile but the results were not satisfactory either (c. E5). I assume this has to do with the
non-uniformity of the screens as described above: Two different positions are taken for both the
profiling and measurement; each position with its slightly different, individual white point and
maximal luminance. Thus, the luminance stored in the profile’s “lumi”-tag might be accurate for
the profiling spot but it might not suit the measuring spot at all. Thereby, taking the luminance
of the profile might corrupt the results as well.

Interpretation of the experimental design 79

Fourthly, there is the uncertainty of the ΔE computing. I used two methods for obtaining
the ΔE: In the beginning (E1, E2, E3) I relied solely on the ΔE values I got from the MeasureTool
but in the end I calculated the ΔE myself. For the first three experiments, I still used a differ-
ent experimentation setup. I opened a color patch, measured the LAB value on the main screen,
opened the external window, measured the LAB value on the extra screen and wrote down both
values and the ΔE. Then, I opened the next color patch, measured on the main screen etc. Thus,
I changed the position of the colorimeter for every patch which means of course an additional
source of error. Furthermore, when I compared the ΔE values from MeasureTool with the values
I calculated by hand (i.e. with the help of excel), I noticed that the two values did not resemble
each other at all. I assume that MeasureTool is not using the original CIE1976 ΔE formula I have
been using but a modified version of it4.

Fifthly and finally, the number of color patches is not sufficient enough to make a thorough
analysis. In order to get a representation of the performance of the CMM, one would definitely
use more than eight patches. A more accurate view on the performance could be obtained by
evaluating around 40 patches, for example. On the other hand side, 40 patches are very time con-
suming to measure because everything has to be done by hand (as described above). If one could
automatize the presentation and measuring of the patches on screen, one would get a broader
and more precise view on the performance. In fact, the Keyframe Software provides already an
interface to communicate with the eye-one measuring tool. Thus, one could program a feature
that displays random color patches on both screens, measures the CIEXYZ values with the help
of the eye-one tool, computes the differences between both screens and presents the results af-
terwards. Indeed, this could very well be feature or topic of future theses.

4 I later typed in some random values of mine in Bruce Lindbloom’s online color difference calcula-
tor at http://www.brucelindbloom.com/ and I noticed that my ΔE calculations equaled the CIE1976 value
on Lindbloom’s page whereas MeasureTools ΔE equaled the CIE1994 value on Lindbloom’s page.

Conclusion

What can we improve in the future?

For my bachelor thesis, I implemented a basic color management framework that processes
ICC profiles and computes color transformations. Furthermore, the color management feature
can be used to upload Nucoda LUTs. Our goal was to prove that the implemented CMM would
help solving the color reproduction problem, which means that it would reduce the color differ-
ence between main and extra screen when the color management feature is turned on.

Unfortunately, this could not be confirmed with my experimentation. The current experi-
mentation setup could not satisfactorily evaluate the performance of the color management
module. At this point, we cannot prove that it works but at least we can assume that it does not
fail neither. To get some more accurate results, one would have to improve the experimentation
design as described above in the discussion. One would have to use a more accurate measuring
instrument like spectrophotometer and some more stable monitors. For a thorough experiment,
however, this would be very time consuming and could therefore not be completed for my par-
ticular bachelor thesis just yet. A such more precise experimentation could help us to optimize
the module, however. So I suggest, somebody could do it in the future.

Moreover, I gained some very valuable experience in setting up an experiment and evaluat-
ing its results. As I have never done an experimentation like this before, I made some rather
stupid beginner’s mistake like not measuring the white patch. So I am sure, I will be much more
professional for future experimentations.

Also, I made some very valuable experiences in the field of image programming. I worked for
the first time on a challenging project with C++, which helped me to improve my skills in this
programming language. What is more, I had my first practical introduction in the field of digital
image processing and color engineering and I learned very much about color transformations
and ICC profiles.

Finally, this framework could be augmented to enabling proofing, as I would suggest for
future projects. In other words, the functions and methods that are already programed for the
CMM can be reused for uploading other media’s profiles and for emulating their special look in
the preview window. One could for example upload the profile of an old Super-8 film and copy
its look to a digital movie.

To sum up, in my bachelor thesis I cleared the way for color transformations in Drylab’s Key-
frame application. This framework could be augmented in the ways as described above. Which
would be interesting challenges for future theses.

Figures 83

Figures

Figure 2-1 	 6
Figure 2-2 	 8
Figure 2-3 	 10
Figure 2-4 	 12
Figure 2-5 	 12
Figure 2-6 	 13
Figure 2-7 	 16
Figure 2-8 	 22
Figure 2-9 	 23
Figure 2-10 	 23
Figure 2-11 	 23
Figure 3-12 	 29
Figure 3-13 	 33
Figure 3-14 	 33
Figure 3-15 	 33
Figure 3-16 	 35
Figure 3-17 	 35
Figure 3-18 	 35
Figure 3-19 	 39
Figure 3-20 	 43
Figure 3-21 	 46
Figure 3-22 	 48
Figure 4-23 	 53
Figure 4-24 	 53
Figure 4-26 	 53
Figure 4-25 	 53
Figure 4-27 	 53
Figure 4-28 	 53
Figure 4-30 	 53
Figure 4-29 	 53
Figure 4-31 	 55
Figure 4-32 	 55
Figure 4-33 	 56
Figure 4-35 	 56
Figure 4-34 	 56
Figure 4-36 	 56
Figure 4-37 	 57

© Simon-Liedtke, Joschua.
© Telekom. http://www.telekom.com/dtag/cms/content/dt/en/81310
Wikimedia: Wiley. File: Wiley Human Visual System.gif. CC BY-SA 3.0.
Wikimedia: SharkD. File: RGBCube b.svg. CC BY-SA 3.0.
Wikimedia: PAR. File: CIExy1931.svg. Public domain.
Wikimedia: Cpesacreta. File: Colorspace.png. CC BY 2.5.
Screenshot by Joschua Simon-Liedtke.
Screenshot by Joschua Simon-Liedtke.
Screenshot by Joschua Simon-Liedtke.
Screenshot by Joschua Simon-Liedtke.
Screenshot by Joschua Simon-Liedtke.
© Rosenlund, John Christian.
© Simon-Liedtke, Joschua.
© Simon-Liedtke, Joschua.
© Simon-Liedtke, Joschua.
© Simon-Liedtke, Joschua.
© Gamut Imaging Services. http://gamutimaging.in/
© Simon-Liedtke, Joschua.
Diagram by Joschua Simon-Liedtke.
Diagram by Joschua Simon-Liedtke.
Diagram by Joschua Simon-Liedtke.
Diagram by Joschua Simon-Liedtke.
Color patch from Photoshop by Joschua Simon-Liedtke.
Color patch from Photoshop by Joschua Simon-Liedtke.
Color patch from Photoshop by Joschua Simon-Liedtke.
Color patch from Photoshop by Joschua Simon-Liedtke.
Color patch from Photoshop by Joschua Simon-Liedtke.
Color patch from Photoshop by Joschua Simon-Liedtke.
Color patch from Photoshop by Joschua Simon-Liedtke.
Color patch from Photoshop by Joschua Simon-Liedtke.
Screenshot by Joschua Simon-Liedtke.
Screenshot by Joschua Simon-Liedtke.
Screenshot by Joschua Simon-Liedtke.
Screenshot by Joschua Simon-Liedtke.
Screenshot by Joschua Simon-Liedtke.
Screenshot by Joschua Simon-Liedtke.
© Lindbloom, Bruce. http://www.brucelindbloom.com/

Figures

Figure 4-38 	 58
Figure 4-39 	 58
Figure 4-41 	 59
Figure 4-40 	 59
Figure 4-42 	 60
Figure 4-43 	 60
Figure 4-44 	 60
Figure 4-45 	 61
Figure 4-46 	 62
Figure 4-47 	 62
Figure 4-48 	 63
Figure 4-49 	 63

Table by Joschua Simon-Liedtke.
Graph by Joschua Simon-Liedtke.
Table by Joschua Simon-Liedtke.
Graph by Joschua Simon-Liedtke.
Table by Joschua Simon-Liedtke.
Table by Joschua Simon-Liedtke.
Graph by Joschua Simon-Liedtke.
Table by Joschua Simon-Liedtke.
Table by Joschua Simon-Liedtke.
Graph by Joschua Simon-Liedtke.
Table by Joschua Simon-Liedtke.
Graph by Joschua Simon-Liedtke.

References 85

Adobe. Adobe RGB. http://www.adobe.com/digitalimag/adobergb.html. Checked on March, 14th
at 1.51 p.m.

Apple. ColorSync Manager Reference. http://developer.apple.com/library/mac/#documentation/
GraphicsImaging/Reference/ColorSync_Manager/Reference/reference.html. Checked on
March, 11th 2011 at 10.40 a.m.

Fltk. Introduction to FLTK. http://fltk.org/doc-1.3/intro.html. Checked on March, 14th 2011
at 5.18 p.m.

GraphPad Software, Inc. http://www.graphpad.com/quickcalcs/ttest1.cfm

Green, Phil and Lindsay MacDonald (2002). Colour Engineering. West Sussex: John Wiley &
Sons, Ltd.

Heavens, Oliver S. & Robert W. Ditchburn (1991). Insight into optics. New York: John Wiley &
Sons, Inc.

IEV. Check International Electrotechnical Commission (IEC). Electropedia.

International Color Consortium (ICC). Introduction to the ICC profile format.
http://www.color.org/iccprofile.xalter. Checked on March, 3rd 2011 at 7.11 p.m.

International Color Consortium (ICC). Color Management: Current Practice and The Adop-
tion of a New Standard. http://www.color.org/wpaper1.xalter. Checked on April, 19th
at 18.32 pm.

International Color Consortium (ICC). Specification ICC.1:2004-10 (Profile version 4.2.0.0).
http://www.color.org/ICC1v42_2006-05.pdf. Checked on April, 19th at 6.31 pm.

International Color Consortium (ICC). Specification of sRGB. IEC 61966-2-1:1999.
http://www.color.org/sRGB.pdf. Checked on March, 11th at 12:31 pm.

International Color Consortium (ICC). sRGB (IEC 61966-2-1:1999). http://www.color.org/char-
data/rgb/srgb.xalter. Checked on March, 15th 2011 at 1.43 p.m.

International Electrotechnical Commission (IEC). Electropedia. http://www.electropedia.org/
All references are indicated by IEV no. #XXX. Just type in the reference number into the
website and you will get the full reference.

International Telecommunication Union (ITU). Studio encoding parameters of digital televi-
sion for standard 4:3 and wide-screen 16:9 aspect ratios (BT.601-6 (01/07)). http://www.itu.
int/rec/R-REC-BT.601/en. Checked on March, 15th 2011.

References

References

International Telecommunication Union (ITU). Parameter values for the HDTV standards for
production and international programme exchange (BT.709-5 (04/02)). http://www.itu.int/
rec/R-REC-BT.709/en. Checked on March, 15th 2011.

Lindbloom, Bruce. http://www.brucelindbloom.com/

LittleCMS. About Little CMS. http://www.littlecms.com/. Checked on March, 14th 2011
at 5.19 p.m.

Nakamura, Junichi. Image Sensors and Signal Processing for Digital Still Cameras.

Den Norske Filmfestivalen Haugesund. Amandavinnerne 2006. http://www.filmweb.no/film-
festivalen2006/incoming/article111498.ece. Checked on March, 15th 2011.

OpenGL. OpenGL Overview. http://www.opengl.org/about/overview/#1. Checked on March, 14th
2011 at 7.46 p.m.

Farmasøytisk institutt, universitetet i Oslo. “T-test og statistisk signifikans: en
smakebit”. http://www.uio.no/studier/emner/matnat/farmasi/FRM1210/v05/
undervisningsmateriale/T_test.doc Downloaded on April, 18th 2011 at 12:46.

Rosenlund, John Christian’s homepage: www.jcr.no.

Sharma, Gaurav (2003). Digital Color Imaging Handbook. Boca Raton: CRC Press LLC.

W3C. A Standard Default Color Space for the Internet - sRGB. http://www.w3.org/Graphics/
Color/sRGB. Checked on March, 15th 2011 at 1.45 p.m.

Wikipedia. NTSC. http://en.wikipedia.org/wiki/Ntsc. Checked on March, 15th 2001 at 1.59 p.m.

Wikipedia. PAL. http://en.wikipedia.org/wiki/ITU-R_BT.470-6. Checked on March, 15th 2011
at 1.58 p.m.

Wikipedia. Secam. http://en.wikipedia.org/wiki/SECAM. Checked on March, 15th 2011
at 2.00 p.m.

Wikipedia. Magenta (Farbe). Link: http://de.wikipedia.org/wiki/Magenta_%28Farbe%29. Checked
on April, 19th 2011 at 1.45 pm.

Wikipedia. Visual system. Link: http://en.wikipedia.org/wiki/Visual_system, Checked on April,
19th 2011 at 2.30 pm.

Willumsen, Urban. 1991. Fargelære. Oslo: Ad Notam forlag AS.

Appendix: Source Code 87

Appendix:
Source Code

/*

 * ColorManagement.cpp

 * keyframe

 *

 * Created by Joschua on 1/14/11.

 * Copyright 2011 Visitech AS. All rights reserved.

 *

 */

#include <map>

#include <iostream>

#include <fstream>

#include <vector>

#include “ColorManagement.h”

#include “../Keyframe.h”

#include “../gui/GradingWindow.h”

#include “../gui/ProjectWindow.h”

ColorManagement::ColorManagement() {

}

void ColorManagement::initializeColorManagementWorkflowAttribute(Project
*project){

	

	 /* This function checks if a color management workflow has been se-
lected, and if not this function sets it on default: no color manage-
ment at all */

	 const char * currColorManagementWorkflow;

Appendix: Source Code

	 currColorManagementWorkflow = project->getAttributeValue(ATTRIBUTE_
PROJECT_COLORMANAGEMENTWORKFLOW);

	

	 this->initializeScreenProfilesAttributes();

	 this->initializeWorkingSpaceAttribute(project);

	

	 if (strcmp(project->getAttributeValue(ATTRIBUTE_PROJECT_COLORMANAGE-
MENTWORKFLOW), “”)) {

		 if (strcmp(“lutcm”, currColorManagementWorkflow) == 0) {

			 printf(“Your color management settings are currently based on
LUTs.\n”);

			

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIOLUTSCM, true);

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIOPROFILESCM,
false);

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIONOCM, false);

			 project->setAttribute(ATTRIBUTE_PROJECT_COLORMANAGEMENTWORK-
FLOW, “lutcm”);

			

		 } else if (strcmp(“profilecm”, currColorManagementWorkflow) == 0) {

			 printf(“Your color management settings are currently based on
ICC profiles.\n”);

			

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIOLUTSCM, false);

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIOPROFILESCM, true);

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIONOCM, false);

			 project->setAttribute(ATTRIBUTE_PROJECT_COLORMANAGEMENTWORK-
FLOW, “profilecm”);

		 } else {

			 printf(“You have decided to currently not use any color man-
agement at all.\n”);	

			

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIOLUTSCM, false);

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIOPROFILESCM,
false);

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIONOCM, true);

			 project->setAttribute(ATTRIBUTE_PROJECT_COLORMANAGEMENTWORK-
FLOW, “nocm”);

		 }

		

	 } else {

Appendix: Source Code 89

		 if (strcmp(project->getAttributeValue(ATTRIBUTE_PROJECT_RADIOLUTSCM),
“”)) {

			 printf(“Your color management settings are currently based on
LUTs.\n”);

			

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIOLUTSCM, true);

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIOPROFILESCM,
false);

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIONOCM, false);

			 project->setAttribute(ATTRIBUTE_PROJECT_COLORMANAGEMENTWORK-
FLOW, “lutcm”);

			

		 } else if (strcmp(project->getAttributeValue(ATTRIBUTE_PROJECT_RADIO-
PROFILESCM), “”)) {

			 printf(“Your color management settings are currently based on
ICC profiles.\n”);

			

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIOLUTSCM, false);

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIOPROFILESCM, true);

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIONOCM, false);

			 project->setAttribute(ATTRIBUTE_PROJECT_COLORMANAGEMENTWORK-
FLOW, “profilecm”);

		 } else {

			 printf(“You have decided to currently not use any color man-
agement at all.\n”);	

			

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIOLUTSCM, false);

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIOPROFILESCM,
false);

			 project->setAttribute(ATTRIBUTE_PROJECT_RADIONOCM, true);

			 project->setAttribute(ATTRIBUTE_PROJECT_COLORMANAGEMENTWORK-
FLOW, “nocm”);

		 }

	 }

}

//GlImage computeLUTFromProfiles();

void ColorManagement::initializeScreenProfilesAttributes(){

	

Appendix: Source Code

	 /* This function checks how many screens are currently connected to
the system

	 * and stores the location of the profiles of both screens for the
whole application.

	 */

	 printf(“Beginning to initialize screen profiles\’ attributes.\n”);

	

	 /* Get a list with all active displays. Limited to two at this point*/

	

	 CGDisplayCount numDisplays;

	 CGDisplayCount allocatedDisplays = 0;

	 CGDirectDisplayID *displayID = NULL;

	

	 OSStatus cgErr = CGGetActiveDisplayList(0, NULL, &numDisplays);

	 if (cgErr!=CGDisplayNoErr){

		 printf(“Error finding number of displays for system1.\n”);

		 return;

	 }

	 allocatedDisplays = numDisplays;

	 displayID = new CGDirectDisplayID[numDisplays];

	 cgErr = CGGetActiveDisplayList(2, displayID, &numDisplays);

	 if (cgErr!=CGDisplayNoErr) {

		 printf(“Error finding the displays for the system2.\n”);

	 }

	

	 /* Getting the profile of the main screen of the system */

	 CMProfileRef mainProfileRef;

	 CMProfileLocation mainProfileLocation;

	

	 CGDirectDisplayID mainScreenID = (CMDisplayIDType)displayID[0];

	 OSStatus cmErr = CMGetProfileByAVID(mainScreenID, &mainProfileRef);

	

	 if (cmErr!=noErr) {

		 printf(“ColorSync profile of the main screen could not be openend.”);

		 return;

	 }

	

	 UInt32 aCount = 255;

Appendix: Source Code 91

	 char aName[256];

	 CMError	mErr = CMGetProfileDescriptions(mainProfileRef, aName,
&aCount, NULL, NULL, NULL, NULL);

	 if (mErr==noErr) {

		 application->configuration.setAttribute(ATTRIBUTE_CONFIGURATION_MAIN-
SCREENPROFILENAME, aName);

	 }

	

	 UInt32 locSize = cmCurrentProfileLocationSize;

	 OSStatus cmPathError = NCMGetProfileLocation(mainProfileRef, &main-
ProfileLocation, &locSize);

	

	 if (cmPathError!=noErr) {

		 printf(“ColorSync location of the profile for the main screen could
not be obtained.”);

		 return;

	 }

	

	 application->configuration.setAttribute(ATTRIBUTE_CONFIGURATION_MAIN-
SCREENPROFILEURL, mainProfileLocation.u.pathLoc.path);

	

	 if (numDisplays>1) {

		 CMProfileRef extraProfileRef;

		 CMProfileLocation extraProfileLocation;

		

		 CGDirectDisplayID extraScreenID = (CMDisplayIDType)displayID[1];

		 OSStatus cmErr = CMGetProfileByAVID(extraScreenID, &extraProfileRef
);

		

		 if (cmErr!=noErr) {

			 printf(“ColorSync profile of the extra screen could not be
openend.\n”);

			 return;

		 }

		

		 UInt32 bCount = 255;

		 char bName[256];

		 mErr = CMGetProfileDescriptions(extraProfileRef, bName, &bCount,
NULL, NULL, NULL, NULL);

		 if (mErr==noErr) {

Appendix: Source Code

			 application->configuration.setAttribute(ATTRIBUTE_CONFIGURA-
TION_EXTRASCREENPROFILENAME, bName);

		 }

		

		 locSize = cmCurrentProfileLocationSize;

		 cmPathError = NCMGetProfileLocation(extraProfileRef, &extraProfile-
Location, &locSize);

		

		 if (cmPathError!=noErr) {

			 printf(“ColorSync location of the profile for the extra screen
could not be obtained.\n”);

			 return;

		 }

		

		 application->configuration.setAttribute(ATTRIBUTE_CONFIGURATION_EX-
TRASCREENPROFILEURL, extraProfileLocation.u.pathLoc.path);

		 application->configuration.setAttribute(ATTRIBUTE_CONFIGURATION_EX-
TRASCREENEXISTS, 1);

	 } else {

		 application->configuration.setAttribute(ATTRIBUTE_CONFIGURATION_EX-
TRASCREENPROFILENAME, “”);

		 application->configuration.setAttribute(ATTRIBUTE_CONFIGURATION_EX-
TRASCREENPROFILEURL, “”);

		 application->configuration.setAttribute(ATTRIBUTE_CONFIGURATION_EX-
TRASCREENEXISTS, 0);

	 }

}

void ColorManagement::doColorManagement(Project *project){

	

	 const char * currColorManagementWorkflow;

	 currColorManagementWorkflow = project->getAttributeValue(ATTRIBUTE_
PROJECT_COLORMANAGEMENTWORKFLOW);

	

	 if (strcmp(“profilecm”, currColorManagementWorkflow) == 0) {

		 this->initializeScreenProfilesAttributes();

		 this->initializeWorkingSpaceAttribute(project);

		

		 this->doProfileColorManagement(project);

		

Appendix: Source Code 93

		 printf(“Your color management settings are currently based on ICC
profiles.\n”);

	 } else if (strcmp(“lutcm”, currColorManagementWorkflow) == 0) {

		 this->initializeScreenProfilesAttributes();

		 this->initializeWorkingSpaceAttribute(project);

		

		 this->doLUTColorManagement(project);

		

		 printf(“Your color management settings are currently based on
LUTs.\n”);

	 } else if (strcmp(“nocm”, currColorManagementWorkflow) == 0) {

		 this->doNoColorManagement(project);

		

		 printf(“You have decided to currently not use any color management
at all.\n”);

	 } else {

		 printf(“Your color managenment workflow settings could currently not
be detected.\n”);

	 }

	

	 application->window.getGradingWindow()->updateTransformed();

	

	 return;

	

}

void ColorManagement::doNoColorManagement(Project *project){

	 /* Reset the luts for both main screen and extra screen */

	

	 GlCanvas *mainScreenCanvas = application->window.getGradingWindow()-
>getPrimaryCanvas();

	 GlCanvas *extraScreenCanvas = application->window.getGradingWindow()-
>getTertiaryCanvas();

	

	 if (mainScreenCanvas){

		 this->resetGlCanvas(mainScreenCanvas);

	 }

	 if (extraScreenCanvas){

		 this->resetGlCanvas(extraScreenCanvas);

Appendix: Source Code

	 }

}

vector<RGBPixel> getRGBValuesFromNucodaFile(const char * path){

	 /* Retrieves the RGB values from a Nucoda file and returns them as a
vector of RGBPixels */

	

	 bool isNucodaFile = false;

	 bool isRGBValue = false;

	 int depth = 0;

	 vector<RGBPixel> rgbValues;

		

	 isNucodaFile = ColorManagement::isNucodaFile(path);

		

	 if(isNucodaFile){

			

		 ifstream f(path);

			

			

		 string line = “”;

				

		 while (getline(f, line)) {

			 RGBPixel p;

					

			 isRGBValue = (“%d\n”, sscanf(line.c_str(), “%f %f %f\n”, &p.r,
&p.g, &p.b)) == 3;

					

			 if (isRGBValue){

				 rgbValues.push_back(p);

			 }					

		 }

	 }	

}

	

	 return rgbValues;

}

bool ColorManagement::isNucodaFile(const char *path){

Appendix: Source Code 95

	

	 bool isNucodaFile = false;

	

	 if (strcmp(path, “”) != 0) {

		 ifstream f(path);

		

		 if (! f.is_open()) {

			 printf(“Failed to open Nucoda LUT File.\n”);

		 }

		 else {

			 string line = “”;

			

			 while (getline(f, line)) {

				

				 if (!isNucodaFile){

					 const char * tempString = “NUCODA_3D_CUBE 2”;

					

					 isNucodaFile = (int)line.find(tempString) != -1;

				 } else {

					 return true;

				 }

			 }

		 }

		

	 } else {

		 printf(“You have not chosen a Nucoda LUT directory yet.\n”);

	 }

	

	 return isNucodaFile;

}

int ColorManagement::getNucodaDepth(const char *path){

	

	 int depth = 0;

	

	 if (strcmp(path, “”) != 0) {

		 ifstream f(path);

Appendix: Source Code

		

		 if (! f.is_open()) {

			 printf(“Failed to open Nucoda LUT File.\n”);

		 }

		 else {

			 string line = “”;

			

			 while (getline(f, line)) {

				 if (depth==0) {

					 sscanf(line.c_str(), “LUT_3D_SIZE %d\n”, &depth);

				 } else {

					 return depth;

				 }

			 }

		 }

		 return depth;

		

	 } else {

		 printf(“You have not chosen a Nucoda LUT directory yet.\n”);

		 return depth;

	 }

}

bool ColorManagement::convertNucodaIntoGlImage(const char *path, GlImage
*lut, int depth){

	

	 bool success = false;

	

	 vector<RGBPixel> rgbValues;

	

	 if (strcmp(path, “”) != 0) {

		

		 rgbValues = getRGBValuesFromNucodaFile(path);

		

		 printf(“size of the final vector %d\n”, (int)rgbValues.size());

		 if((int)rgbValues.size()==depth*depth*depth){

Appendix: Source Code 97

			 int x=0;

			 for(int b=0;b<depth; b++){

				 for (int g=0;g<depth;g++){

					 for (int r=0;r<depth;r++) {

						 lut->setSample(lut->getSampleIndex(r, g, 1,
b), rgbValues[x].g);

						 lut->setSample(lut->getSampleIndex(r, g, 1,
b), rgbValues[x].g);

						 lut->setSample(lut->getSampleIndex(r, g, 2,
b), rgbValues[x].b);

						 x++;

					 }

				 }

			 }

			

			 success = true;

			

			 printf(“Converting NUCODA to GlImage succeeded.\n”);

		 } else {

			 printf(“Something is wrong with your Nucoda file: Not enough
values for all sample points.\n”);

		 }

		

	 } else {

		 printf(“You have not chosen a Nucoda LUT directory yet.\n”);

	 }

	

	 return success;

}

void ColorManagement::doLUTColorManagement(Project *project){

	

	 bool mainSuccess = false;

	 bool extraSuccess = false;

	

	 /* Set LUT for main screen */

	 GlCanvas *mainScreenCanvas = application->window.getGradingWindow()-
>getPrimaryCanvas();

	 //GlImage *mainScreenLut = NULL;

Appendix: Source Code

	

	 const char * mainLUTNucodaPath = project->getAttributeValue(ATTRIBUTE_
PROJECT_IMPORTMAINSCREENLUTDIRECTORY);

	 int mainDepth;

	 if(isNucodaFile(mainLUTNucodaPath)){

		 mainDepth = getNucodaDepth(mainLUTNucodaPath);

		 if(mainDepth!=0){

			 mainScreenLUT = mainScreenCanvas->getLut3D();

			 if (mainScreenLUT) {

				 mainScreenLUT->deActivate();

				 mainScreenLUT->allocate(mainDepth, mainDepth, 3, main-
Depth);

				 mainScreenLUT->initializeLut();

			 } else {

				 mainScreenLUT = new GlImage(mainDepth, mainDepth, 3,
COLORIMETRIC_RGB, mainDepth);

				 mainScreenLUT->initializeLut();

				 mainScreenCanvas->setLut3D(mainScreenLUT);

			 }

			 printf(“Converting main screen Nucoda LUT.\n”);

			 mainSuccess = convertNucodaIntoGlImage(mainLUTNucodaPath,
mainScreenLUT, mainDepth);

		 }

	 }

	

	 if (!mainSuccess) {

		 this->resetGlCanvas(mainScreenCanvas);

	 }

	

	 /* Set LUT for extra Screen */

	 GlCanvas *extraScreenCanvas = application->window.getGradingWindow()-
>getTertiaryCanvas();

	 GlImage *extraScreenLut = NULL;

	

	 if (extraScreenCanvas) {

		 const char * extraLUTNucodaPath = project-
>getAttributeValue(ATTRIBUTE_PROJECT_IMPORTEXTRASCREENLUTDIRECTORY);

Appendix: Source Code 99

		 int extraDepth;	

		

		 if(isNucodaFile(extraLUTNucodaPath)){

			 extraDepth = getNucodaDepth(extraLUTNucodaPath);

			 if(extraDepth!=0){

				

				 extraScreenLut = extraScreenCanvas->getLut3D();

				 if (extraScreenLut) {

					 extraScreenLut->deActivate();

					 extraScreenLut->allocate(extraDepth, extraDepth,
3, extraDepth);

					 extraScreenLut->initializeLut();

				 } else {

					 extraScreenLut = new GlImage(extraDepth, ex-
traDepth, 3, COLORIMETRIC_RGB, extraDepth);

					 extraScreenLUT->initializeLut();

					 extraScreenCanvas->setLut3D(extraScreenLut);

				 }

				 printf(“Converting extra screen Nucoda LUT.\n”);

				 extraSuccess = convertNucodaIntoGlImage(extraLUTNucodaP
ath, extraScreenLut, extraDepth);

			 }

		 }

		 if (!extraSuccess) {

			 this->resetGlCanvas(extraScreenCanvas);

		 }

	 }

}

void ColorManagement::initializeWorkingSpaceAttribute(Project *project){

	 /* Set the working space for the project and stores the URL to the
profile in an attribute. */

	

	 const char * currWorkingSpace;

	 currWorkingSpace = project->getAttributeValue(ATTRIBUTE_PROJECT_WORK-
INGSPACEPROFILE);

	

	 map<string, ColorSpaceMetaData *> workingSpaceProfilePathDict;

	

Appendix: Source Code

	 /* #HDEG: Initialize this collection for the whole application */

	 workingSpaceProfilePathDict[“sRGB”] = new ColorSpaceMetaData(true, ap-
plication->directoryHelper.getProfilesDirectory() / “sRGB Color Space
Profile.ICM”);

	 workingSpaceProfilePathDict[“DCI”] = new ColorSpaceMetaData(false, ap-
plication->directoryHelper.getProfilesDirectory() / “sRGB Color Space
Profile.ICM”);

	 workingSpaceProfilePathDict[“None”] = NULL; //new
ColorSpaceMetaData(false, application->directoryHelper.getProfilesDi-
rectory() / “sRGB Color Space Profile.ICM”);

	 workingSpaceProfilePathDict[“Adobe RGB (1998)”] = new
ColorSpaceMetaData(true, application->directoryHelper.getProfilesDi-
rectory() / “AdobeRGB1998.icc”);

	 workingSpaceProfilePathDict[“Rec. 709”] = new ColorSpaceMetaData(true,
application->directoryHelper.getProfilesDirectory() / “VideoHD.icc”);

	 workingSpaceProfilePathDict[“Rec. 601 (PAL/SECAM)”] = new
ColorSpaceMetaData(true, application->directoryHelper.getProfilesDi-
rectory() / “VideoPAL.icc”);

	 workingSpaceProfilePathDict[“Rec. 601 (NTSC)”] = new
ColorSpaceMetaData(true, application->directoryHelper.getProfilesDi-
rectory() / “VideoNTSC.icc”);

	

	 zzzz} else {

		 printf(“No working space chosen.\n”);

		 project->setAttribute(ATTRIBUTE_PROJECT_WORKINGSPACEPROFILEURL, “”);

	 }

}

void ColorManagement::resetGlCanvas(GlCanvas *canvas){

	 /* Reset the lut connected to a GlCanvas to a neutral LUT. */

	

	 GlImage *lut = canvas->getLut3D();

	 if(lut){

		 lut->deActivate();

		 lut->allocate(32, 32, 3, 32);

		 lut->initializeLut();

		 lut->gain(1.0);

	 }else {

		 lut = new GlImage(32, 32, 3, COLORIMETRIC_RGB, 32);

		 lut->initializeLut();

		 lut->gain(1.0);

		 canvas->setLut3D(lut);

Appendix: Source Code 101

	 }

}

void ColorManagement::doProfileColorManagement(Project *project){

	 /* Compute the color transformation and create GlImage lut depending
on the profiles of the selected working space and the two screens. */

	

	

	 printf(“working_space: %s\n”, project->getAttributeValue(ATTRIBUTE_
PROJECT_WORKINGSPACEPROFILE));

	

	 GlCanvas *mainScreenCanvas = application->window.getGradingWindow()-
>getPrimaryCanvas();

	 GlCanvas *extraScreenCanvas = application->window.getGradingWindow()-
>getTertiaryCanvas();

	

	 /* Getting the profile of the current working space */	

	 const char * workingSpaceProfileURL = project-
>getAttributeValue(ATTRIBUTE_PROJECT_WORKINGSPACEPROFILEURL);

	

	 if (strcmp(workingSpaceProfileURL, “”) != 0){

		 workingSpaceProfile = cmsOpenProfileFromFile(workingSpaceProfileURL,
“s”);

	 } else {

		 printf(“Working space profile could not be found.\n”);

		 if (mainScreenCanvas) {

			 this->resetGlCanvas(mainScreenCanvas);

		 }

		 if (extraScreenCanvas) {

			 this->resetGlCanvas(extraScreenCanvas);			

		 }

		

		 return;

	 }

	

	 if (!workingSpaceProfile){

		 printf(“Working space profile could not be opened.\n”);

		 if (mainScreenCanvas) {

			 this->resetGlCanvas(mainScreenCanvas);

Appendix: Source Code

		 }

		 if (extraScreenCanvas) {

			 this->resetGlCanvas(extraScreenCanvas);			

		 }

		

		 return;

	 } else {

		

		 /* getMainScreenProfileLUT*/

		 const char *mainProfileLocationPath = application->configuration.
getAttributeValue(ATTRIBUTE_CONFIGURATION_MAINSCREENPROFILEURL);

		 printf(“mainscreenprofilepath: %s\n”, mainProfileLocationPath);

		 mainScreenProfile = cmsOpenProfileFromFile(mainProfileLocationPath,
“s”);

		

		 if (mainScreenProfile == NULL) {

			 printf(“LittleCMS profile of the main screen could not be
opened.\n”);

			 if (mainScreenCanvas) {

				 this->resetGlCanvas(mainScreenCanvas);

			 }

		 } else {

			

			 cmsHTRANSFORM tempLUT = cmsCreateTransform(workingSpaceProfi
le, TYPE_RGB_8, mainScreenProfile, TYPE_RGB_8, INTENT_RELATIVE_COL-
ORIMETRIC, cmsFLAGS_GAMUTCHECK);

			

			 GlImage *tempInput = new GlImage(32, 32, 3, COLORIMETRIC_RGB,
32);

			

			 mainScreenLUT = mainScreenCanvas->getLut3D();

			 if (mainScreenLUT) {

				 mainScreenLUT->deActivate();

				 mainScreenLUT->allocate(32, 32, 3, 32);

				 mainScreenLUT->initializeLut();

			 } else {

				 mainScreenLUT = new GlImage(32, 32, 3, COLORIMETRIC_RGB,
32);

				 mainScreenCanvas->setLut3D(mainScreenLUT);

			 }

Appendix: Source Code 103

			

			 tempInput->initializeLut();

			 cmsDoTransform(tempLUT, tempInput->getBufferU8(), mainScreen-
LUT->getBufferU8(), 32*32*32);

			

			 cmsCloseProfile(mainScreenProfile);

			 cmsDeleteTransform(tempLUT);

		 }

			

		 /* getExtraScreenLUT */

		 if (extraScreenCanvas) {

			

			 const char *extraProfileLocationPath = application-
>configuration.getAttributeValue(ATTRIBUTE_CONFIGURATION_EXTRASCREEN-
PROFILEURL);

			 //Path extraPath = application->directoryHelper.getProfilesDi-
rectory() / “Extra-screen_11-04-2011_1.icc”;

			 //const char *extraProfileLocationPath = (const char *)extra-
Path.getBuffer();

			 printf(“extrascreenprofilepath: %s\n”, extraProfileLocation-
Path);

			 extraScreenProfile = cmsOpenProfileFromFile(extraProfileLocat
ionPath, “s”);

				

			 if (extraScreenProfile == NULL) {

				 printf(“LittleCMS profile of the extra screen could not
be opened.”);

				 if (extraScreenCanvas) {

					 this->resetGlCanvas(extraScreenCanvas);		
	

				 }

				 return;

			 } else {

				 printf(“extraScreenCanvas found.\n”);

				

				 cmsHTRANSFORM tempLUT = cmsCreateTransform(workingSpa
ceProfile, TYPE_RGB_8, extraScreenProfile, TYPE_RGB_8, INTENT_RELA-
TIVE_COLORIMETRIC, cmsFLAGS_GAMUTCHECK);

					

				 GlImage *tempInput = new GlImage(32, 32, 3, COLORIMET-
RIC_RGB, 32);

Appendix: Source Code

					

				 mainScreenLUT = extraScreenCanvas->getLut3D();

				 if (mainScreenLUT) {

					 mainScreenLUT->deActivate();

					 mainScreenLUT->allocate(32, 32, 3, 32);

					 mainScreenLUT->initializeLut();

				 } else {

					 mainScreenLUT = new GlImage(32, 32, 3, COLORIMET-
RIC_RGB, 32);

					 extraScreenCanvas->setLut3D(mainScreenLUT);

				 }

					

				 tempInput->initializeLut();

				 cmsDoTransform(tempLUT, tempInput->getBufferU8(), main-
ScreenLUT->getBufferU8(), 32*32*32);

					

				 cmsCloseProfile(extraScreenProfile);

				 cmsDeleteTransform(tempLUT);

			 }

		 }

			

		 return;

		

	 }	

}

	Evaluation of the Color Management Module
	Experiment design and evaluation
	1.	Design of the color patches
	2.	Monitor calibration
	3.	Profiling
	4.	Measuring
	5.	Evaluation

	Discussion
	Interpretation of the experimental design

	Conclusion
	What can we improve in the future?

	Figures
	References
	Appendix: Source Code
	Figure 2-1
	Figure 2-2
	Figure 2-3
	Figure 2-4
	Figure 2-5
	Figure 2-6
	Figure 2-7
	Figure 2-8
	Figure 2-9
	Figure 2-10
	Figure 2-11
	Figure 3-12
	Figure 3-13
	Figure 3-14
	Figure 3-15
	Figure 3-16
	Figure 3-17
	Figure 3-18
	Figure 3-19
	Figure 3-20
	Figure 3-21
	Figure 3-22
	Figure 4-23
	Figure 4-24
	Figure 4-26
	Figure 4-25
	Figure 4-27
	Figure 4-28
	Figure 4-30
	Figure 4-29
	Figure 4-31
	Figure 4-32
	Figure 4-33
	Figure 4-35
	Figure 4-34
	Figure 4-36
	Figure 4-37
	Figure 4-38
	Figure 4-39
	Figure 4-41
	Figure 4-40
	Figure 4-42
	Figure 4-43
	Figure 4-44
	Figure 4-45
	Figure 4-46
	Figure 4-47
	Figure 4-48
	Figure 4-49

